POMFinder : identifying polyoxometallate cluster structures from pair distribution function data using explainable machine learning

© Andy S. Anker et al. 2024.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 57(2024), Pt 1 vom: 01. Feb., Seite 34-43
1. Verfasser: Anker, Andy S (VerfasserIn)
Weitere Verfasser: Kjær, Emil T S, Juelsholt, Mikkel, Jensen, Kirsten M Ø
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article POMFinder computational modelling machine learning polyoxometallate clusters
Beschreibung
Zusammenfassung:© Andy S. Anker et al. 2024.
Characterization of a material structure with pair distribution function (PDF) analysis typically involves refining a structure model against an experimental data set, but finding or constructing a suitable atomic model for PDF modelling can be an extremely labour-intensive task, requiring carefully browsing through large numbers of possible models. Presented here is POMFinder, a machine learning (ML) classifier that rapidly screens a database of structures, here polyoxometallate (POM) clusters, to identify candidate structures for PDF data modelling. The approach is shown to identify suitable POMs from experimental data, including in situ data collected with fast acquisition times. This automated approach has significant potential for identifying suitable models for structure refinement to extract quantitative structural parameters in materials chemistry research. POMFinder is open source and user friendly, making it accessible to those without prior ML knowledge. It is also demonstrated that POMFinder offers a promising modelling framework for combined modelling of multiple scattering techniques
Beschreibung:Date Revised 10.02.2024
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0021-8898
DOI:10.1107/S1600576723010014