Evidential Multi-Source-Free Unsupervised Domain Adaptation

Multi-Source-Free Unsupervised Domain Adaptation (MSFUDA) requires aggregating knowledge from multiple source models and adapting it to the target domain. Two challenges remain: 1) suboptimal coarse-grained (domain-level) aggregation of multiple source models, and 2) risky semantics propagation base...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 8 vom: 15. Juli, Seite 5288-5305
1. Verfasser: Pei, Jiangbo (VerfasserIn)
Weitere Verfasser: Men, Aidong, Liu, Yang, Zhuang, Xiahai, Chen, Qingchao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM36804873X
003 DE-627
005 20240703234438.0
007 cr uuu---uuuuu
008 240206s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3361978  |2 doi 
028 5 2 |a pubmed24n1459.xml 
035 |a (DE-627)NLM36804873X 
035 |a (NLM)38315607 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pei, Jiangbo  |e verfasserin  |4 aut 
245 1 0 |a Evidential Multi-Source-Free Unsupervised Domain Adaptation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-Source-Free Unsupervised Domain Adaptation (MSFUDA) requires aggregating knowledge from multiple source models and adapting it to the target domain. Two challenges remain: 1) suboptimal coarse-grained (domain-level) aggregation of multiple source models, and 2) risky semantics propagation based on local structures. In this article, we propose an evidential learning method for MSFUDA, where we formulate two uncertainties, i.e. Evidential Prediction Uncertainty (EPU) and Evidential Adjacency-Consistent Uncertainty (EAU), respectively for addressing the two challenges. The former, EPU, captures the uncertainty of a sample fitted to a source model, which can suggest the preferences of target samples for different source models. Based on this, we develop an EPU-Based Multi-Source Aggregation module to achieve fine-grained, instance-level source knowledge aggregation. The latter, EAU, provides a robust measure of consistency among adjacent samples in the target domain. Utilizing this, we develop an EAU-Guided Local Structure Mining module to ensure the trustworthy propagation of semantics. The two modules are integrated into the Evidential Aggregation and Adaptation Framework (EAAF), and we demonstrated that this framework achieves state-of-the-art performances on three MSFUDA benchmarks 
650 4 |a Journal Article 
700 1 |a Men, Aidong  |e verfasserin  |4 aut 
700 1 |a Liu, Yang  |e verfasserin  |4 aut 
700 1 |a Zhuang, Xiahai  |e verfasserin  |4 aut 
700 1 |a Chen, Qingchao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 8 vom: 15. Juli, Seite 5288-5305  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:8  |g day:15  |g month:07  |g pages:5288-5305 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3361978  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 8  |b 15  |c 07  |h 5288-5305