Recent Advancements in Understanding of Growth and Properties of Antiwear Tribofilms Derived from Zinc Dialkyl Dithiophosphate Additives under Nanoscale Sliding Contacts

Zinc dialkyl dithiophosphate (ZDDP) is a key antiwear additive in lubricants that forms robust phosphate glass-based tribofilms to mitigate wear on rubbing surfaces. The quest to unravel the enigma of these antiwear film formations on sliding surfaces has persisted as an enduring mystery, despite ne...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - (2024) vom: 05. Feb.
1. Verfasser: Soni, Jitendra (VerfasserIn)
Weitere Verfasser: Gosvami, Nitya Nand
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Review
Beschreibung
Zusammenfassung:Zinc dialkyl dithiophosphate (ZDDP) is a key antiwear additive in lubricants that forms robust phosphate glass-based tribofilms to mitigate wear on rubbing surfaces. The quest to unravel the enigma of these antiwear film formations on sliding surfaces has persisted as an enduring mystery, despite nearly a century of fervent research. This paper presents a comprehensive review of nanotribological investigations, centering on the tribochemical decomposition of ZDDP antiwear additives. The core of the Review explores investigations conducted through the in situ AFM-based technique, which has been used to unveil the underlying stress-assisted thermal activation (SATA) mechanism behind the formation of antiwear tribofilms on diverse surfaces. A thorough analysis is presented, encompassing governing factors, such as compression, shear, and temperature, that wield influence over the intricate process of tribofilm formation. This is substantiated by a spectrum of structural and chemical characterization-based inferences. Furthermore, atomic-scale computer simulation studies are discussed that provide profound insights into tribochemical reaction mechanisms and elucidate the details of chemical processes at atomic level
Beschreibung:Date Revised 05.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c02512