A Time-Consistency Curriculum for Learning From Instance-Dependent Noisy Labels

Many machine learning algorithms are known to be fragile on simple instance-independent noisy labels. However, noisy labels in real-world data are more devastating since they are produced by more complicated mechanisms in an instance-dependent manner. In this paper, we target this practical challeng...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 03. Juni, Seite 4830-4842
1. Verfasser: Wu, Songhua (VerfasserIn)
Weitere Verfasser: Zhou, Tianyi, Du, Yuxuan, Yu, Jun, Han, Bo, Liu, Tongliang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367901773
003 DE-627
005 20240606232337.0
007 cr uuu---uuuuu
008 240202s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3360623  |2 doi 
028 5 2 |a pubmed24n1430.xml 
035 |a (DE-627)NLM367901773 
035 |a (NLM)38300782 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Songhua  |e verfasserin  |4 aut 
245 1 2 |a A Time-Consistency Curriculum for Learning From Instance-Dependent Noisy Labels 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many machine learning algorithms are known to be fragile on simple instance-independent noisy labels. However, noisy labels in real-world data are more devastating since they are produced by more complicated mechanisms in an instance-dependent manner. In this paper, we target this practical challenge of Instance-Dependent Noisy Labels by jointly training (1) a model reversely engineering the noise generating mechanism, which produces an instance-dependent mapping between the clean label posterior and the observed noisy label and (2) a robust classifier that produces clean label posteriors. Compared to previous methods, the former model is novel and enables end-to-end learning of the latter directly from noisy labels. An extensive empirical study indicates that the time-consistency of data is critical to the success of training both models and motivates us to develop a curriculum selecting training data based on their dynamics on the two models' outputs over the course of training. We show that the curriculum-selected data provide both clean labels and high-quality input-output pairs for training the two models. Therefore, it leads to promising and robust classification performance even in notably challenging settings of instance-dependent noisy labels where many SoTA methods could easily fail. Extensive experimental comparisons and ablation studies further demonstrate the advantages and significance of the time-consistency curriculum in learning from instance-dependent noisy labels on multiple benchmark datasets 
650 4 |a Journal Article 
700 1 |a Zhou, Tianyi  |e verfasserin  |4 aut 
700 1 |a Du, Yuxuan  |e verfasserin  |4 aut 
700 1 |a Yu, Jun  |e verfasserin  |4 aut 
700 1 |a Han, Bo  |e verfasserin  |4 aut 
700 1 |a Liu, Tongliang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 03. Juni, Seite 4830-4842  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:03  |g month:06  |g pages:4830-4842 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3360623  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 03  |c 06  |h 4830-4842