A Time-Consistency Curriculum for Learning From Instance-Dependent Noisy Labels
Many machine learning algorithms are known to be fragile on simple instance-independent noisy labels. However, noisy labels in real-world data are more devastating since they are produced by more complicated mechanisms in an instance-dependent manner. In this paper, we target this practical challeng...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 03. Juni, Seite 4830-4842 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | Many machine learning algorithms are known to be fragile on simple instance-independent noisy labels. However, noisy labels in real-world data are more devastating since they are produced by more complicated mechanisms in an instance-dependent manner. In this paper, we target this practical challenge of Instance-Dependent Noisy Labels by jointly training (1) a model reversely engineering the noise generating mechanism, which produces an instance-dependent mapping between the clean label posterior and the observed noisy label and (2) a robust classifier that produces clean label posteriors. Compared to previous methods, the former model is novel and enables end-to-end learning of the latter directly from noisy labels. An extensive empirical study indicates that the time-consistency of data is critical to the success of training both models and motivates us to develop a curriculum selecting training data based on their dynamics on the two models' outputs over the course of training. We show that the curriculum-selected data provide both clean labels and high-quality input-output pairs for training the two models. Therefore, it leads to promising and robust classification performance even in notably challenging settings of instance-dependent noisy labels where many SoTA methods could easily fail. Extensive experimental comparisons and ablation studies further demonstrate the advantages and significance of the time-consistency curriculum in learning from instance-dependent noisy labels on multiple benchmark datasets |
---|---|
Beschreibung: | Date Revised 06.06.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2024.3360623 |