A Time-Consistency Curriculum for Learning From Instance-Dependent Noisy Labels

Many machine learning algorithms are known to be fragile on simple instance-independent noisy labels. However, noisy labels in real-world data are more devastating since they are produced by more complicated mechanisms in an instance-dependent manner. In this paper, we target this practical challeng...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 03. Juni, Seite 4830-4842
1. Verfasser: Wu, Songhua (VerfasserIn)
Weitere Verfasser: Zhou, Tianyi, Du, Yuxuan, Yu, Jun, Han, Bo, Liu, Tongliang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Many machine learning algorithms are known to be fragile on simple instance-independent noisy labels. However, noisy labels in real-world data are more devastating since they are produced by more complicated mechanisms in an instance-dependent manner. In this paper, we target this practical challenge of Instance-Dependent Noisy Labels by jointly training (1) a model reversely engineering the noise generating mechanism, which produces an instance-dependent mapping between the clean label posterior and the observed noisy label and (2) a robust classifier that produces clean label posteriors. Compared to previous methods, the former model is novel and enables end-to-end learning of the latter directly from noisy labels. An extensive empirical study indicates that the time-consistency of data is critical to the success of training both models and motivates us to develop a curriculum selecting training data based on their dynamics on the two models' outputs over the course of training. We show that the curriculum-selected data provide both clean labels and high-quality input-output pairs for training the two models. Therefore, it leads to promising and robust classification performance even in notably challenging settings of instance-dependent noisy labels where many SoTA methods could easily fail. Extensive experimental comparisons and ablation studies further demonstrate the advantages and significance of the time-consistency curriculum in learning from instance-dependent noisy labels on multiple benchmark datasets
Beschreibung:Date Revised 06.06.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2024.3360623