Self-Assembled Nanoflowers Realizes Synergistic Sterilization with Photothermal and Chemical Kinetics Therapy

Wounds caused by bacterial infections have become a major challenge in the medical field; however, the overuse of antibiotics has led to increased resistance and bioaccumulation. Therefore, it is urgent to develop an antibacterial agent with excellent antibacterial properties and biosafety. Here, we...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 40(2024), 5 vom: 06. Feb., Seite 2591-2600
1. Verfasser: Wu, Jing (VerfasserIn)
Weitere Verfasser: Xiang, Shuqing, Zhang, Ming, Zhou, Ninglin, Wang, Mingqian, Li, Li, Shen, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Anti-Bacterial Agents Hydrogen Peroxide BBX060AN9V Manganese Compounds Oxides manganese oxide 64J2OA7MH3
Beschreibung
Zusammenfassung:Wounds caused by bacterial infections have become a major challenge in the medical field; however, the overuse of antibiotics has led to increased resistance and bioaccumulation. Therefore, it is urgent to develop an antibacterial agent with excellent antibacterial properties and biosafety. Here, we designed an antibacterial platform that combines photothermal and chemical kinetics therapies. Platinum-cobalt (PtCo) bimetallic nanoparticles (NPs) were first prepared, and then PtCoMnO2 nanoflowers were obtained by adding MES buffer solution and KMnO4 to the PtCo bimetallic nanoparticle suspension using ultrasound. When light strikes metal NPs, they can strongly absorb the photon energy, resulting in photothermal properties. In addition, Pt and Co were used as the oxidase mimics, and MnO2 was used as the catalase mimic. In summary, the photothermal capacity of PtCo@MnO2 nanoflowers with rough surfaces can effectively disrupt the permeability of the bacterial cell membranes. Further, by catalyzing H2O2, PtCo@MnO2 nanoflowers can generate large amounts of hydroxyl free radicals, which can damage bacterial cell membranes, proteins, and DNA. In addition, MnO2 can effectively alleviate the hypoxic environment of the bacterially infected areas and activate deep bacteria, thus achieving the goal of complete sterilization. The in vitro and in vivo results showed that PtCo@MnO2 displayed excellent antibacterial properties and good biocompatibility
Beschreibung:Date Completed 13.02.2024
Date Revised 15.02.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c02838