Burst Image Restoration and Enhancement

Burst Image Restoration aims to reconstruct a high-quality image by efficiently combining complementary inter-frame information. However, it is quite challenging since individual burst images often have inter-frame misalignments that usually lead to ghosting and zipper artifacts. To mitigate this, w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 19. Jan.
1. Verfasser: Dudhane, Akshay (VerfasserIn)
Weitere Verfasser: Zamir, Syed Waqas, Khan, Salman, Khan, Fahad Shahbaz, Yang, Ming-Husan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367316102
003 DE-627
005 20240123232020.0
007 cr uuu---uuuuu
008 240120s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3356188  |2 doi 
028 5 2 |a pubmed24n1268.xml 
035 |a (DE-627)NLM367316102 
035 |a (NLM)38241114 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dudhane, Akshay  |e verfasserin  |4 aut 
245 1 0 |a Burst Image Restoration and Enhancement 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Burst Image Restoration aims to reconstruct a high-quality image by efficiently combining complementary inter-frame information. However, it is quite challenging since individual burst images often have inter-frame misalignments that usually lead to ghosting and zipper artifacts. To mitigate this, we develop a novel approach for burst image processing named BIPNet that focuses solely on the information exchange between burst frames and filter-out the inherent degradations while preserving and enhancing the actual scene details. Our central idea is to generate a set of pseudo-burst features that combine complementary information from all the burst frames to exchange information seamlessly. However, due to inter-frame misalignment, the information cannot be effectively combined in pseudo-burst. Thus, we initially align the incoming burst features regarding the reference frame using the proposed edge-boosting feature alignment. Lastly, we progressively upscale the pseudo-burst features in multiple stages while adaptively combining the complementary information. Unlike the existing works, that usually deploy single-stage up-sampling with a late fusion scheme, we first deploy a pseudo-burst mechanism followed by the adaptive-progressive feature up-sampling. The proposed BIPNet significantly outperforms the existing methods on burst super-resolution, low-light image enhancement, low-light image super-resolution, and denoising tasks. The pre-trained models and source code are available at https://github.com/akshaydudhane16/BIPNet 
650 4 |a Journal Article 
700 1 |a Zamir, Syed Waqas  |e verfasserin  |4 aut 
700 1 |a Khan, Salman  |e verfasserin  |4 aut 
700 1 |a Khan, Fahad Shahbaz  |e verfasserin  |4 aut 
700 1 |a Yang, Ming-Husan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 19. Jan.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:19  |g month:01 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3356188  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 19  |c 01