Burst Image Restoration and Enhancement
Burst Image Restoration aims to reconstruct a high-quality image by efficiently combining complementary inter-frame information. However, it is quite challenging since individual burst images often have inter-frame misalignments that usually lead to ghosting and zipper artifacts. To mitigate this, w...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 19. Jan. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | Burst Image Restoration aims to reconstruct a high-quality image by efficiently combining complementary inter-frame information. However, it is quite challenging since individual burst images often have inter-frame misalignments that usually lead to ghosting and zipper artifacts. To mitigate this, we develop a novel approach for burst image processing named BIPNet that focuses solely on the information exchange between burst frames and filter-out the inherent degradations while preserving and enhancing the actual scene details. Our central idea is to generate a set of pseudo-burst features that combine complementary information from all the burst frames to exchange information seamlessly. However, due to inter-frame misalignment, the information cannot be effectively combined in pseudo-burst. Thus, we initially align the incoming burst features regarding the reference frame using the proposed edge-boosting feature alignment. Lastly, we progressively upscale the pseudo-burst features in multiple stages while adaptively combining the complementary information. Unlike the existing works, that usually deploy single-stage up-sampling with a late fusion scheme, we first deploy a pseudo-burst mechanism followed by the adaptive-progressive feature up-sampling. The proposed BIPNet significantly outperforms the existing methods on burst super-resolution, low-light image enhancement, low-light image super-resolution, and denoising tasks. The pre-trained models and source code are available at https://github.com/akshaydudhane16/BIPNet |
---|---|
Beschreibung: | Date Revised 23.01.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2024.3356188 |