TransVQA : Transferable Vector Quantization Alignment for Unsupervised Domain Adaptation

Unsupervised Domain adaptation (UDA) aims to transfer knowledge from the labeled source domain to the unlabeled target domain. Most existing domain adaptation methods are based on convolutional neural networks (CNNs) to learn cross-domain invariant features. Inspired by the success of transformer ar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 17., Seite 856-866
1. Verfasser: Sun, Yulin (VerfasserIn)
Weitere Verfasser: Dong, Weisheng, Li, Xin, Dong, Le, Shi, Guangming, Xie, Xuemei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367223651
003 DE-627
005 20240122232044.0
007 cr uuu---uuuuu
008 240118s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3352392  |2 doi 
028 5 2 |a pubmed24n1267.xml 
035 |a (DE-627)NLM367223651 
035 |a (NLM)38231815 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Yulin  |e verfasserin  |4 aut 
245 1 0 |a TransVQA  |b Transferable Vector Quantization Alignment for Unsupervised Domain Adaptation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Unsupervised Domain adaptation (UDA) aims to transfer knowledge from the labeled source domain to the unlabeled target domain. Most existing domain adaptation methods are based on convolutional neural networks (CNNs) to learn cross-domain invariant features. Inspired by the success of transformer architectures and their superiority to CNNs, we propose to combine the transformer with UDA to improve their generalization properties. In this paper, we present a novel model named Trans ferable V ector Q uantization A lignment for Unsupervised Domain Adaptation (TransVQA), which integrates the Transferable transformer-based feature extractor (Trans), vector quantization domain alignment (VQA), and mutual information weighted maximization confusion matrix (MIMC) of intra-class discrimination into a unified domain adaptation framework. First, TransVQA uses the transformer to extract more accurate features in different domains for classification. Second, TransVQA, based on the vector quantization alignment module, uses a two-step alignment method to align the extracted cross-domain features and solve the domain shift problem. The two-step alignment includes global alignment via vector quantization and intra-class local alignment via pseudo-labels. Third, for intra-class feature discrimination problem caused by the fuzzy alignment of different domains, we use the MIMC module to constrain the target domain output and increase the accuracy of pseudo-labels. The experiments on several datasets of domain adaptation show that TransVQA can achieve excellent performance and outperform existing state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Dong, Weisheng  |e verfasserin  |4 aut 
700 1 |a Li, Xin  |e verfasserin  |4 aut 
700 1 |a Dong, Le  |e verfasserin  |4 aut 
700 1 |a Shi, Guangming  |e verfasserin  |4 aut 
700 1 |a Xie, Xuemei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 17., Seite 856-866  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:17  |g pages:856-866 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3352392  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 17  |h 856-866