TransVQA : Transferable Vector Quantization Alignment for Unsupervised Domain Adaptation
Unsupervised Domain adaptation (UDA) aims to transfer knowledge from the labeled source domain to the unlabeled target domain. Most existing domain adaptation methods are based on convolutional neural networks (CNNs) to learn cross-domain invariant features. Inspired by the success of transformer ar...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 17., Seite 856-866
|
1. Verfasser: |
Sun, Yulin
(VerfasserIn) |
Weitere Verfasser: |
Dong, Weisheng,
Li, Xin,
Dong, Le,
Shi, Guangming,
Xie, Xuemei |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Schlagworte: | Journal Article |