Match Normalization : Learning-Based Point Cloud Registration for 6D Object Pose Estimation in the Real World

In this work, we tackle the task of estimating the 6D pose of an object from point cloud data. While recent learning-based approaches have shown remarkable success on synthetic datasets, we have observed them to fail in the presence of real-world data. We investigate the root causes of these failure...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 6 vom: 23. Mai, Seite 4489-4503
1. Verfasser: Dang, Zheng (VerfasserIn)
Weitere Verfasser: Wang, Lizhou, Guo, Yu, Salzmann, Mathieu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367223600
003 DE-627
005 20240508232303.0
007 cr uuu---uuuuu
008 240118s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3355198  |2 doi 
028 5 2 |a pubmed24n1401.xml 
035 |a (DE-627)NLM367223600 
035 |a (NLM)38231797 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dang, Zheng  |e verfasserin  |4 aut 
245 1 0 |a Match Normalization  |b Learning-Based Point Cloud Registration for 6D Object Pose Estimation in the Real World 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this work, we tackle the task of estimating the 6D pose of an object from point cloud data. While recent learning-based approaches have shown remarkable success on synthetic datasets, we have observed them to fail in the presence of real-world data. We investigate the root causes of these failures and identify two main challenges: The sensitivity of the widely-used SVD-based loss function to the range of rotation between the two point clouds, and the difference in feature distributions between the source and target point clouds. We address the first challenge by introducing a directly supervised loss function that does not utilize the SVD operation. To tackle the second, we introduce a new normalization strategy, Match Normalization. Our two contributions are general and can be applied to many existing learning-based 3D object registration frameworks, which we illustrate by implementing them in two of them, DCP and IDAM. Our experiments on the real-scene TUD-L Hodan et al. 2018, LINEMOD Hinterstoisser et al. 2012 and Occluded-LINEMOD Brachmann et al. 2014 datasets evidence the benefits of our strategies. They allow for the first-time learning-based 3D object registration methods to achieve meaningful results on real-world data. We therefore expect them to be key to the future developments of point cloud registration methods 
650 4 |a Journal Article 
700 1 |a Wang, Lizhou  |e verfasserin  |4 aut 
700 1 |a Guo, Yu  |e verfasserin  |4 aut 
700 1 |a Salzmann, Mathieu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 6 vom: 23. Mai, Seite 4489-4503  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:6  |g day:23  |g month:05  |g pages:4489-4503 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3355198  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 6  |b 23  |c 05  |h 4489-4503