B-Cos Alignment for Inherently Interpretable CNNs and Vision Transformers

We present a new direction for increasing the interpretability of deep neural networks (DNNs) by promoting weight-input alignment during training. For this, we propose to replace the linear transformations in DNNs by our novel B-cos transformation. As we show, a sequence (network) of such transforma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 6 vom: 26. Mai, Seite 4504-4518
1. Verfasser: Bohle, Moritz (VerfasserIn)
Weitere Verfasser: Singh, Navdeeppal, Fritz, Mario, Schiele, Bernt
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article