B-Cos Alignment for Inherently Interpretable CNNs and Vision Transformers

We present a new direction for increasing the interpretability of deep neural networks (DNNs) by promoting weight-input alignment during training. For this, we propose to replace the linear transformations in DNNs by our novel B-cos transformation. As we show, a sequence (network) of such transforma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 6 vom: 26. Mai, Seite 4504-4518
1. Verfasser: Bohle, Moritz (VerfasserIn)
Weitere Verfasser: Singh, Navdeeppal, Fritz, Mario, Schiele, Bernt
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367223562
003 DE-627
005 20240508232304.0
007 cr uuu---uuuuu
008 240118s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3355155  |2 doi 
028 5 2 |a pubmed24n1401.xml 
035 |a (DE-627)NLM367223562 
035 |a (NLM)38231801 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bohle, Moritz  |e verfasserin  |4 aut 
245 1 0 |a B-Cos Alignment for Inherently Interpretable CNNs and Vision Transformers 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a new direction for increasing the interpretability of deep neural networks (DNNs) by promoting weight-input alignment during training. For this, we propose to replace the linear transformations in DNNs by our novel B-cos transformation. As we show, a sequence (network) of such transformations induces a single linear transformation that faithfully summarises the full model computations. Moreover, the B-cos transformation is designed such that the weights align with relevant signals during optimisation. As a result, those induced linear transformations become highly interpretable and highlight task-relevant features. Importantly, the B-cos transformation is designed to be compatible with existing architectures and we show that it can easily be integrated into virtually all of the latest state of the art models for computer vision-e.g. ResNets, DenseNets, ConvNext models, as well as Vision Transformers-by combining the B-cos-based explanations with normalisation and attention layers, all whilst maintaining similar accuracy on ImageNet. Finally, we show that the resulting explanations are of high visual quality and perform well under quantitative interpretability metrics 
650 4 |a Journal Article 
700 1 |a Singh, Navdeeppal  |e verfasserin  |4 aut 
700 1 |a Fritz, Mario  |e verfasserin  |4 aut 
700 1 |a Schiele, Bernt  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 6 vom: 26. Mai, Seite 4504-4518  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:6  |g day:26  |g month:05  |g pages:4504-4518 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3355155  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 6  |b 26  |c 05  |h 4504-4518