MTR++ : Multi-Agent Motion Prediction With Symmetric Scene Modeling and Guided Intention Querying

Motion prediction is crucial for autonomous driving systems to understand complex driving scenarios and make informed decisions. However, this task is challenging due to the diverse behaviors of traffic participants and complex environmental contexts. In this paper, we propose Motion TRansformer (MT...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 12. Mai, Seite 3955-3971
Auteur principal: Shi, Shaoshuai (Auteur)
Autres auteurs: Jiang, Li, Dai, Dengxin, Schiele, Bernt
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM367058782
003 DE-627
005 20250305162444.0
007 cr uuu---uuuuu
008 240114s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3352811  |2 doi 
028 5 2 |a pubmed25n1223.xml 
035 |a (DE-627)NLM367058782 
035 |a (NLM)38215322 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shi, Shaoshuai  |e verfasserin  |4 aut 
245 1 0 |a MTR++  |b Multi-Agent Motion Prediction With Symmetric Scene Modeling and Guided Intention Querying 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Motion prediction is crucial for autonomous driving systems to understand complex driving scenarios and make informed decisions. However, this task is challenging due to the diverse behaviors of traffic participants and complex environmental contexts. In this paper, we propose Motion TRansformer (MTR) frameworks to address these challenges. The initial MTR framework utilizes a transformer encoder-decoder structure with learnable intention queries, enabling efficient and accurate prediction of future trajectories. By customizing intention queries for distinct motion modalities, MTR improves multimodal motion prediction while reducing reliance on dense goal candidates. The framework comprises two essential processes: global intention localization, identifying the agent's intent to enhance overall efficiency, and local movement refinement, adaptively refining predicted trajectories for improved accuracy. Moreover, we introduce an advanced MTR++ framework, extending the capability of MTR to simultaneously predict multimodal motion for multiple agents. MTR++ incorporates symmetric context modeling and mutually-guided intention querying modules to facilitate future behavior interaction among multiple agents, resulting in scene-compliant future trajectories. Extensive experimental results demonstrate that the MTR framework achieves state-of-the-art performance on the highly-competitive motion prediction benchmarks, while the MTR++ framework surpasses its precursor, exhibiting enhanced performance and efficiency in predicting accurate multimodal future trajectories for multiple agents 
650 4 |a Journal Article 
700 1 |a Jiang, Li  |e verfasserin  |4 aut 
700 1 |a Dai, Dengxin  |e verfasserin  |4 aut 
700 1 |a Schiele, Bernt  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 5 vom: 12. Mai, Seite 3955-3971  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:5  |g day:12  |g month:05  |g pages:3955-3971 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3352811  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 5  |b 12  |c 05  |h 3955-3971