Intelligent Bladder Volume Monitoring for Wearable Ultrasound Devices : Enhancing Accuracy Through Deep Learning-Based Coarse-to-Fine Shape Estimation

Accurate and continuous bladder volume monitoring is crucial for managing urinary dysfunctions. Wearable ultrasound (US) devices offer a solution by enabling noninvasive and real-time monitoring. Previous studies have limitations in power consumption and computation cost or quantitative volume estim...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 71(2024), 7 vom: 08. Juli, Seite 775-785
1. Verfasser: Lee, Kyungsu (VerfasserIn)
Weitere Verfasser: Lee, Moon Hwan, Kang, Dongho, Kim, Sewoong, Chang, Jin Ho, Oh, Seung-June, Hwang, Jae Youn
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM366812769
003 DE-627
005 20240709232058.0
007 cr uuu---uuuuu
008 240114s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2024.3350033  |2 doi 
028 5 2 |a pubmed24n1465.xml 
035 |a (DE-627)NLM366812769 
035 |a (NLM)38190679 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Kyungsu  |e verfasserin  |4 aut 
245 1 0 |a Intelligent Bladder Volume Monitoring for Wearable Ultrasound Devices  |b Enhancing Accuracy Through Deep Learning-Based Coarse-to-Fine Shape Estimation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.07.2024 
500 |a Date Revised 09.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Accurate and continuous bladder volume monitoring is crucial for managing urinary dysfunctions. Wearable ultrasound (US) devices offer a solution by enabling noninvasive and real-time monitoring. Previous studies have limitations in power consumption and computation cost or quantitative volume estimation capability. To alleviate this, we present a novel pipeline that effectively integrates conventional feature extraction and deep learning (DL) to achieve continuous quantitative bladder volume monitoring efficiently. Particularly, in the proposed pipeline, bladder shape is coarsely estimated by a simple bladder wall detection algorithm in wearable devices, and the bladder wall coordinates are wirelessly transferred to an external server. Subsequently, a roughly estimated bladder shape from the wall coordinates is refined in an external server with a diffusion-based model. With this approach, power consumption and computation costs on wearable devices remained low, while fully harnessing the potential of DL for accurate shape estimation. To evaluate the proposed pipeline, we collected a dataset of bladder US images and RF signals from 250 patients. By simulating data acquisition from wearable devices using the dataset, we replicated real-world scenarios and validated the proposed method within these scenarios. Experimental results exhibit superior improvements, including +9.32% of IoU value in 2-D segmentation and -22.06 of RMSE in bladder volume regression compared to state-of-the-art (SOTA) performance from alternative methods, emphasizing the potential of this approach in continuous bladder volume monitoring in clinical settings. Therefore, this study effectively bridges the gap between accurate bladder volume estimation and the practical deployment of wearable US devices, promising improved patient care and quality of life 
650 4 |a Journal Article 
700 1 |a Lee, Moon Hwan  |e verfasserin  |4 aut 
700 1 |a Kang, Dongho  |e verfasserin  |4 aut 
700 1 |a Kim, Sewoong  |e verfasserin  |4 aut 
700 1 |a Chang, Jin Ho  |e verfasserin  |4 aut 
700 1 |a Oh, Seung-June  |e verfasserin  |4 aut 
700 1 |a Hwang, Jae Youn  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 71(2024), 7 vom: 08. Juli, Seite 775-785  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:71  |g year:2024  |g number:7  |g day:08  |g month:07  |g pages:775-785 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2024.3350033  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 71  |j 2024  |e 7  |b 08  |c 07  |h 775-785