Intelligent Bladder Volume Monitoring for Wearable Ultrasound Devices : Enhancing Accuracy Through Deep Learning-Based Coarse-to-Fine Shape Estimation

Accurate and continuous bladder volume monitoring is crucial for managing urinary dysfunctions. Wearable ultrasound (US) devices offer a solution by enabling noninvasive and real-time monitoring. Previous studies have limitations in power consumption and computation cost or quantitative volume estim...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 71(2024), 7 vom: 08. Juli, Seite 775-785
1. Verfasser: Lee, Kyungsu (VerfasserIn)
Weitere Verfasser: Lee, Moon Hwan, Kang, Dongho, Kim, Sewoong, Chang, Jin Ho, Oh, Seung-June, Hwang, Jae Youn
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Accurate and continuous bladder volume monitoring is crucial for managing urinary dysfunctions. Wearable ultrasound (US) devices offer a solution by enabling noninvasive and real-time monitoring. Previous studies have limitations in power consumption and computation cost or quantitative volume estimation capability. To alleviate this, we present a novel pipeline that effectively integrates conventional feature extraction and deep learning (DL) to achieve continuous quantitative bladder volume monitoring efficiently. Particularly, in the proposed pipeline, bladder shape is coarsely estimated by a simple bladder wall detection algorithm in wearable devices, and the bladder wall coordinates are wirelessly transferred to an external server. Subsequently, a roughly estimated bladder shape from the wall coordinates is refined in an external server with a diffusion-based model. With this approach, power consumption and computation costs on wearable devices remained low, while fully harnessing the potential of DL for accurate shape estimation. To evaluate the proposed pipeline, we collected a dataset of bladder US images and RF signals from 250 patients. By simulating data acquisition from wearable devices using the dataset, we replicated real-world scenarios and validated the proposed method within these scenarios. Experimental results exhibit superior improvements, including +9.32% of IoU value in 2-D segmentation and -22.06 of RMSE in bladder volume regression compared to state-of-the-art (SOTA) performance from alternative methods, emphasizing the potential of this approach in continuous bladder volume monitoring in clinical settings. Therefore, this study effectively bridges the gap between accurate bladder volume estimation and the practical deployment of wearable US devices, promising improved patient care and quality of life
Beschreibung:Date Completed 09.07.2024
Date Revised 09.07.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.2024.3350033