B-Site Co-Doping Coupled with Additive Passivation Pushes the Efficiency of Pb-Sn Mixed Inorganic Perovskite Solar Cells to Over 17

© 2023 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 14 vom: 29. Apr., Seite e2309193
1. Verfasser: Zhang, Weihai (VerfasserIn)
Weitere Verfasser: Liu, Heng, Qu, Yating, Cui, Jieshun, Zhang, Wenjun, Shi, Tingting, Wang, Hsing-Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article co‐doping high efficiency in situ encapsulation inorganic perovskite lead‐reduced
Beschreibung
Zusammenfassung:© 2023 Wiley‐VCH GmbH.
Pb-Sn mixed inorganic perovskite solar cells (PSCs) have garnered increasing interest as a viable solution to mitigate the thermal instability and lead toxicity of hybrid lead-based PSCs. However, the relatively poor structural stability and low device efficiency hinder its further development. Herein, high-performance manganese (Mn)-doped Pb-Sn-Mn-based inorganic perovskite solar cells (PSCs) are successfully developed by introducing Benzhydroxamic Acid (BHA) as multifunctional additive. The incorporation of smaller divalent Mn cations contributes to a contraction of the perovskite crystal, leading to an improvement in structural stability. The BHA additive containing a reductive hydroxamic acid group (O═C-NHOH) not only mitigates the notorious oxidation of Sn2+ but also interacts with metal ions at the B-site and passivates related defects. This results in films with high crystallinity and low defect density. Moreover, the BHA molecules tend to introduce a near-vertical dipole moment that parallels the built-in electric field, thus facilitating charge carrier extraction. Consequently, the resulting device delivers a champion PCE as high as 17.12%, which represents the highest reported efficiency for Pb-Sn-based inorganic PSCs thus far. Furthermore, the BHA molecule provides an in situ encapsulation of the perovskite grain boundary, resulting in significant enhancement of device air stability
Beschreibung:Date Revised 04.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202309193