SENSE : Self-Evolving Learning for Self-Supervised Monocular Depth Estimation

Self-supervised depth estimation methods can achieve competitive performance using only unlabeled monocular videos, but they suffer from the uncertainty of jointly learning depth and pose without any ground truths of both tasks. Supervised framework provides robust and superior performance but is li...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 25., Seite 439-450
Auteur principal: Li, Guanbin (Auteur)
Autres auteurs: Huang, Ricong, Li, Haofeng, You, Zunzhi, Chen, Weikai
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article