SENSE : Self-Evolving Learning for Self-Supervised Monocular Depth Estimation
Self-supervised depth estimation methods can achieve competitive performance using only unlabeled monocular videos, but they suffer from the uncertainty of jointly learning depth and pose without any ground truths of both tasks. Supervised framework provides robust and superior performance but is li...
| Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 25., Seite 439-450 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2024
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
| Schlagworte: | Journal Article |
| Online verfügbar |
Volltext |