Self-Training Boosted Multi-Factor Matching Network for Composed Image Retrieval

The composed image retrieval (CIR) task aims to retrieve the desired target image for a given multimodal query, i.e., a reference image with its corresponding modification text. The key limitations encountered by existing efforts are two aspects: 1) ignoring the multiple query-target matching factor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 04. Apr., Seite 3665-3678
1. Verfasser: Wen, Haokun (VerfasserIn)
Weitere Verfasser: Song, Xuemeng, Yin, Jianhua, Wu, Jianlong, Guan, Weili, Nie, Liqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM366361961
003 DE-627
005 20240405233323.0
007 cr uuu---uuuuu
008 231227s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3346434  |2 doi 
028 5 2 |a pubmed24n1366.xml 
035 |a (DE-627)NLM366361961 
035 |a (NLM)38145530 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wen, Haokun  |e verfasserin  |4 aut 
245 1 0 |a Self-Training Boosted Multi-Factor Matching Network for Composed Image Retrieval 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The composed image retrieval (CIR) task aims to retrieve the desired target image for a given multimodal query, i.e., a reference image with its corresponding modification text. The key limitations encountered by existing efforts are two aspects: 1) ignoring the multiple query-target matching factors; 2) ignoring the potential unlabeled reference-target image pairs in existing benchmark datasets. To address these two limitations is non-trivial due to the following challenges: 1) how to effectively model the multiple matching factors in a latent way without direct supervision signals; 2) how to fully utilize the potential unlabeled reference-target image pairs to improve the generalization ability of the CIR model. To address these challenges, in this work, we first propose a CLIP-Transformer based muLtI-factor Matching Network (LIMN), which consists of three key modules: disentanglement-based latent factor tokens mining, dual aggregation-based matching token learning, and dual query-target matching modeling. Thereafter, we design an iterative dual self-training paradigm to further enhance the performance of LIMN by fully utilizing the potential unlabeled reference-target image pairs in a weakly-supervised manner. Specifically, we denote the iterative dual self-training paradigm enhanced LIMN as LIMN+. Extensive experiments on four datasets, including FashionIQ, Shoes, CIRR, and Fashion200 K, show that our proposed LIMN and LIMN+ significantly surpass the state-of-the-art baselines 
650 4 |a Journal Article 
700 1 |a Song, Xuemeng  |e verfasserin  |4 aut 
700 1 |a Yin, Jianhua  |e verfasserin  |4 aut 
700 1 |a Wu, Jianlong  |e verfasserin  |4 aut 
700 1 |a Guan, Weili  |e verfasserin  |4 aut 
700 1 |a Nie, Liqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 5 vom: 04. Apr., Seite 3665-3678  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:5  |g day:04  |g month:04  |g pages:3665-3678 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3346434  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 5  |b 04  |c 04  |h 3665-3678