Self-Training Boosted Multi-Factor Matching Network for Composed Image Retrieval
The composed image retrieval (CIR) task aims to retrieve the desired target image for a given multimodal query, i.e., a reference image with its corresponding modification text. The key limitations encountered by existing efforts are two aspects: 1) ignoring the multiple query-target matching factor...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 04. Apr., Seite 3665-3678 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | The composed image retrieval (CIR) task aims to retrieve the desired target image for a given multimodal query, i.e., a reference image with its corresponding modification text. The key limitations encountered by existing efforts are two aspects: 1) ignoring the multiple query-target matching factors; 2) ignoring the potential unlabeled reference-target image pairs in existing benchmark datasets. To address these two limitations is non-trivial due to the following challenges: 1) how to effectively model the multiple matching factors in a latent way without direct supervision signals; 2) how to fully utilize the potential unlabeled reference-target image pairs to improve the generalization ability of the CIR model. To address these challenges, in this work, we first propose a CLIP-Transformer based muLtI-factor Matching Network (LIMN), which consists of three key modules: disentanglement-based latent factor tokens mining, dual aggregation-based matching token learning, and dual query-target matching modeling. Thereafter, we design an iterative dual self-training paradigm to further enhance the performance of LIMN by fully utilizing the potential unlabeled reference-target image pairs in a weakly-supervised manner. Specifically, we denote the iterative dual self-training paradigm enhanced LIMN as LIMN+. Extensive experiments on four datasets, including FashionIQ, Shoes, CIRR, and Fashion200 K, show that our proposed LIMN and LIMN+ significantly surpass the state-of-the-art baselines |
---|---|
Beschreibung: | Date Revised 05.04.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2023.3346434 |