Tension-Induced Localized Wrinkling in a Patched Thin Film Supported by an Elastomer
The wrinkling behavior of thin films has received great attention for their applications in developing various wrinkle-based novel technologies. Herein, a new wrinkling system: tension-induced wrinkling in an elastomer-supported patched thin film (TW-P&SF) is investigated by using PDMS-supported...
| Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 40(2024), 1 vom: 09. Jan., Seite 133-140 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2024
|
| Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
| Schlagworte: | Journal Article |
| Zusammenfassung: | The wrinkling behavior of thin films has received great attention for their applications in developing various wrinkle-based novel technologies. Herein, a new wrinkling system: tension-induced wrinkling in an elastomer-supported patched thin film (TW-P&SF) is investigated by using PDMS-supported patched polyimide thin films with different thicknesses and varied length/width ratios. Different from the well-studied compression-induced wrinkling in an elastomer-supported thin film (CW-SF) and tension-induced wrinkling in an edge-clamped free-standing thin film (TW-FF), in the system of TW-P&SF, the wrinkles are localized near the edge of the film with a finite length that follows a center-symmetric distribution. It was found that the wrinkle length lmax and the wrinkle period λ scale with the film thickness h as λ ∼ h0.86 and lmax ∼ h-0.79. With the assistance of the two-dimensional shear lag model and scaling analysis, the underlying mechanism for wrinkle localization is clarified. Furthermore, the promise of the TW-P&SF-enabled wrinkle-based method as a new method for thin film mechanical characterization is demonstrated |
|---|---|
| Beschreibung: | Date Revised 10.01.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1520-5827 |
| DOI: | 10.1021/acs.langmuir.3c02282 |