PHB3 interacts with BRI1 and BAK1 to mediate brassinosteroid signal transduction in Arabidopsis and tomato
© 2023 The Authors New Phytologist © 2023 New Phytologist Foundation.
Veröffentlicht in: | The New phytologist. - 1979. - 241(2024), 4 vom: 19. Jan., Seite 1510-1524 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 BRI1 ASSOCIATED RECEPTOR KINASE 1 PROHIBITIN 3 brassinosteroid phosphorylation tomato Protein Serine-Threonine Kinases EC 2.7.11.1 mehr... |
Zusammenfassung: | © 2023 The Authors New Phytologist © 2023 New Phytologist Foundation. Brassinosteroids (BRs) are plant hormones that are essential in plant growth and development. BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and BRI1 ASSOCIATED RECEPTOR KINASE 1 (BAK1), which are located on the plasma membrane, function as co-receptors that accept and transmit BR signals. PROHIBITIN 3 (PHB3) was identified in both BRI1 and BAK1 complexes by affinity purification and LC-MS/MS analysis. Biochemical data showed that BRI1/BAK1 interacted with PHB3 in vitro and in vivo. BRI1/BAK1 phosphorylated PHB3 in vitro. When the Thr-80 amino acid in PHB3 was mutated to Ala, the mutant protein was not phosphorylated by BRI1 and the mutant protein interaction with BRI1 was abolished in the yeast two-hybrid assay. BAK1 did not phosphorylate the mutant protein PHB3T54A . The loss-of-function phb3 mutant showed a weaker BR signal than the wild-type. Genetic analyses revealed that PHB3 is a BRI1/BAK1 downstream substrate that participates in BR signalling. PHB3 has five homozygous in tomato, and we named the closest to AtPHB3 as SlPHB3.1. Biochemical data showed that SlBRI1/SlSERK3A/SlSERK3B interacted with SlPHB3.1 and SlPHB3.3. The CRISPR-Cas9 method generated slphb3.1 mutant led to a BR signal stunted relatively in tomatoes. PHB3 is a new component of the BR signal pathway in both Arabidopsis and tomato |
---|---|
Beschreibung: | Date Completed 26.01.2024 Date Revised 26.01.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.19469 |