Enhancing Person Re-Identification Performance Through In Vivo Learning

This research investigates the potential of in vivo learning to enhance visual representation learning for image-based person re-identification (re-ID). Compared to traditional self-supervised learning (which require external data), the introduced in vivo learning utilizes supervisory labels generat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 18., Seite 639-654
1. Verfasser: Huang, Yan (VerfasserIn)
Weitere Verfasser: Zhang, Zhang, Wu, Qiang, Zhong, Yi, Wang, Liang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM365999377
003 DE-627
005 20240114234822.0
007 cr uuu---uuuuu
008 231227s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3341762  |2 doi 
028 5 2 |a pubmed24n1258.xml 
035 |a (DE-627)NLM365999377 
035 |a (NLM)38109235 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Yan  |e verfasserin  |4 aut 
245 1 0 |a Enhancing Person Re-Identification Performance Through In Vivo Learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.01.2024 
500 |a Date Revised 12.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This research investigates the potential of in vivo learning to enhance visual representation learning for image-based person re-identification (re-ID). Compared to traditional self-supervised learning (which require external data), the introduced in vivo learning utilizes supervisory labels generated from pedestrian images to improve re-ID accuracy without relying on external data sources. Three carefully designed in vivo learning tasks, leveraging statistical regularities within images, are proposed without the need for laborious manual annotations. These tasks enable feature extractors to learn more comprehensive and discriminative person representations by jointly modeling various aspects of human biological structure information, contributing to enhanced re-ID performance. Notably, the method seamlessly integrates with existing re-ID frameworks, requiring minimal modifications and no additional data beyond the existing training set. Extensive experiments on diverse datasets, including Market1501, CUHK03-NP, Celeb-reID, Celeb-reid-light, PRCC, and LTCC, demonstrate substantial enhancements in rank-1 precision compared to state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Huang, Yan  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhang  |e verfasserin  |4 aut 
700 1 |a Wu, Qiang  |e verfasserin  |4 aut 
700 1 |a Zhong, Yi  |e verfasserin  |4 aut 
700 1 |a Wang, Liang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 18., Seite 639-654  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:18  |g pages:639-654 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3341762  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 18  |h 639-654