|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM365949744 |
003 |
DE-627 |
005 |
20240329000256.0 |
007 |
cr uuu---uuuuu |
008 |
231227s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202309171
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1353.xml
|
035 |
|
|
|a (DE-627)NLM365949744
|
035 |
|
|
|a (NLM)38104281
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Niu, Tingting
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Phase-Pure α-FAPbI3 Perovskite Solar Cells via Activating Lead-Iodine Frameworks
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 28.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley‐VCH GmbH.
|
520 |
|
|
|a Narrow bandgap cubic formamidine perovskite (α-FAPbI3) is widely studied for its potential to achieve record‑breaking efficiency. However, its high preparation difficulty caused by lattice instability is criticized. A popular strategy for stabilizing the α-FAPbI3 lattice is to replace intrinsic FA+ or I- with smaller ions of MA+, Cs+, Rb+, and Br-, whereas this generally leads to broadened optical bandgap and phase separation. Studies show that ions substitution-free phase-pure α-FAPbI3 can achieve intrinsic phase stability. However, the challenging preparation of high-quality films has hindered its further development. Here, a facile synthesis of high-quality MA+, Cs+, Rb+, and Br--free phase-pure α-FAPbI3 perovskite film by a new solution modification strategy is reported. This enables the activation of lead-iodine (Pb─I) frameworks by forming the coated Pb⋯O network, thus simultaneously promoting spontaneous homogeneous nucleation and rapid phase transition from δ to α phase. As a result, the efficient and stable phase-pure α-FAPbI3 PSC is obtained through a one-step method without antisolvent treatment, with a record efficiency of 23.15% and excellent long-term operating stability for 500 h under continuous light stress
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Pb─I frameworks
|
650 |
|
4 |
|a chemical interaction
|
650 |
|
4 |
|a phase transition
|
650 |
|
4 |
|a phase‐pure α‐FAPbI3
|
700 |
1 |
|
|a Chao, Lingfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xia, Yingdong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Kaiyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ran, Xueqin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Xiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Changshun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Jinpei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Deli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Su, Zhenhuang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Zhelu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Xingyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Yonghua
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 13 vom: 27. März, Seite e2309171
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:13
|g day:27
|g month:03
|g pages:e2309171
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202309171
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 13
|b 27
|c 03
|h e2309171
|