Phase-Pure α-FAPbI3 Perovskite Solar Cells via Activating Lead-Iodine Frameworks
© 2023 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 13 vom: 27. März, Seite e2309171 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Pb─I frameworks chemical interaction phase transition phase‐pure α‐FAPbI3 |
Zusammenfassung: | © 2023 Wiley‐VCH GmbH. Narrow bandgap cubic formamidine perovskite (α-FAPbI3) is widely studied for its potential to achieve record‑breaking efficiency. However, its high preparation difficulty caused by lattice instability is criticized. A popular strategy for stabilizing the α-FAPbI3 lattice is to replace intrinsic FA+ or I- with smaller ions of MA+, Cs+, Rb+, and Br-, whereas this generally leads to broadened optical bandgap and phase separation. Studies show that ions substitution-free phase-pure α-FAPbI3 can achieve intrinsic phase stability. However, the challenging preparation of high-quality films has hindered its further development. Here, a facile synthesis of high-quality MA+, Cs+, Rb+, and Br--free phase-pure α-FAPbI3 perovskite film by a new solution modification strategy is reported. This enables the activation of lead-iodine (Pb─I) frameworks by forming the coated Pb⋯O network, thus simultaneously promoting spontaneous homogeneous nucleation and rapid phase transition from δ to α phase. As a result, the efficient and stable phase-pure α-FAPbI3 PSC is obtained through a one-step method without antisolvent treatment, with a record efficiency of 23.15% and excellent long-term operating stability for 500 h under continuous light stress |
---|---|
Beschreibung: | Date Revised 28.03.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202309171 |