|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM365225886 |
003 |
DE-627 |
005 |
20231227132137.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.3c02484
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1226.xml
|
035 |
|
|
|a (DE-627)NLM365225886
|
035 |
|
|
|a (NLM)38031448
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Meng, Xian-Ze
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Molecular Insights into the Stability of Titanium in Electrolytes Containing Chlorine and Fluorine Ions
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 12.12.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Titanium and its alloys are protected by a compact and stable passive film, which confers resistance to corrosion by the primary halogen chloride (Cl-) while being less effective against fluoride (F-). Although researchers have recognized different macroscopic corrosion effects of these halide ions on titanium, the underlying mechanisms remain largely unexplored. In this work, the bonding of Cl-/F- with stable passive films was studied in neutral and acidic (pH = 2.3) conditions. The synergistic effect between the interfacial hydrogen bond (HB) structure and halogens on titanium corrosion was first revealed using first-principles calculation and Raman spectroscopy. F- forms more stable halogen-Ti bonds than Cl-, resulting in titanium degradation. The proton combined with F- exhibits a specific synergistic effect, causing corrosion of the passive film. The water hydrogen bond transformation index (HBTI) at the titanium/aqueous interface was 1.88 in an acidic solution containing F-, significantly higher than that in neutral/acid solutions containing Cl- (1.80/1.81) and a neutral solution containing F- (1.81). This work clarifies the structure-activity relationship between HBTI and the destruction of titanium passive films. We propose that the microstructure of the interfacial HB is an undeniable factor in the corrosion of titanium
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Li, Xin-Ran
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Fei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Hao-Jie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Qin-Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Lian-Kui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Di Tommaso, Devis
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Fa-He
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 39(2023), 49 vom: 12. Dez., Seite 17853-17861
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2023
|g number:49
|g day:12
|g month:12
|g pages:17853-17861
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.3c02484
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2023
|e 49
|b 12
|c 12
|h 17853-17861
|