Molecular Insights into the Stability of Titanium in Electrolytes Containing Chlorine and Fluorine Ions
Titanium and its alloys are protected by a compact and stable passive film, which confers resistance to corrosion by the primary halogen chloride (Cl-) while being less effective against fluoride (F-). Although researchers have recognized different macroscopic corrosion effects of these halide ions...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 49 vom: 12. Dez., Seite 17853-17861 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Titanium and its alloys are protected by a compact and stable passive film, which confers resistance to corrosion by the primary halogen chloride (Cl-) while being less effective against fluoride (F-). Although researchers have recognized different macroscopic corrosion effects of these halide ions on titanium, the underlying mechanisms remain largely unexplored. In this work, the bonding of Cl-/F- with stable passive films was studied in neutral and acidic (pH = 2.3) conditions. The synergistic effect between the interfacial hydrogen bond (HB) structure and halogens on titanium corrosion was first revealed using first-principles calculation and Raman spectroscopy. F- forms more stable halogen-Ti bonds than Cl-, resulting in titanium degradation. The proton combined with F- exhibits a specific synergistic effect, causing corrosion of the passive film. The water hydrogen bond transformation index (HBTI) at the titanium/aqueous interface was 1.88 in an acidic solution containing F-, significantly higher than that in neutral/acid solutions containing Cl- (1.80/1.81) and a neutral solution containing F- (1.81). This work clarifies the structure-activity relationship between HBTI and the destruction of titanium passive films. We propose that the microstructure of the interfacial HB is an undeniable factor in the corrosion of titanium |
---|---|
Beschreibung: | Date Revised 12.12.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.3c02484 |