DN-DETR : Accelerate DETR Training by Introducing Query DeNoising

We present in this paper a novel denoising training method to speed up DETR (DEtection TRansformer) training and offer a deepened understanding of the slow convergence issue of DETR-like methods. We show that the slow convergence results from the instability of bipartite graph matching which causes...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 4 vom: 29. Apr., Seite 2239-2251
Auteur principal: Li, Feng (Auteur)
Autres auteurs: Zhang, Hao, Liu, Shilong, Guo, Jian, Ni, Lionel M, Zhang, Lei
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM365107670
003 DE-627
005 20250305121426.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3335410  |2 doi 
028 5 2 |a pubmed25n1216.xml 
035 |a (DE-627)NLM365107670 
035 |a (NLM)38019624 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Feng  |e verfasserin  |4 aut 
245 1 0 |a DN-DETR  |b Accelerate DETR Training by Introducing Query DeNoising 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present in this paper a novel denoising training method to speed up DETR (DEtection TRansformer) training and offer a deepened understanding of the slow convergence issue of DETR-like methods. We show that the slow convergence results from the instability of bipartite graph matching which causes inconsistent optimization goals in early training stages. To address this issue, except for the Hungarian loss, our method additionally feeds GT bounding boxes with noises into the Transformer decoder and trains the model to reconstruct the original boxes, which effectively reduces the bipartite graph matching difficulty and leads to faster convergence. Our method is universal and can be easily plugged into any DETR-like method by adding dozens of lines of code to achieve a remarkable improvement. As a result, our DN-DETR results in a remarkable improvement ( +1.9AP) under the same setting and achieves 46.0 AP and 49.5 AP trained for 12 and 50 epochs with the ResNet-50 backbone. Compared with the baseline under the same setting, DN-DETR achieves comparable performance with 50% training epochs. We also demonstrate the effectiveness of denoising training in CNN-based detectors (Faster R-CNN), segmentation models (Mask2Former, Mask DINO), and more DETR-based models (DETR, Anchor DETR, Deformable DETR) 
650 4 |a Journal Article 
700 1 |a Zhang, Hao  |e verfasserin  |4 aut 
700 1 |a Liu, Shilong  |e verfasserin  |4 aut 
700 1 |a Guo, Jian  |e verfasserin  |4 aut 
700 1 |a Ni, Lionel M  |e verfasserin  |4 aut 
700 1 |a Zhang, Lei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 4 vom: 29. Apr., Seite 2239-2251  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:4  |g day:29  |g month:04  |g pages:2239-2251 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3335410  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 4  |b 29  |c 04  |h 2239-2251