Multilevel Gradient-Ordered Silicon Anode with Unprecedented Sodium Storage

© 2023 Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 7 vom: 19. Feb., Seite e2310270
Auteur principal: Li, Ying (Auteur)
Autres auteurs: Wu, Feng, Li, Yu, Feng, Xin, Zheng, Lumin, Liu, Mingquan, Li, Shuqiang, Qian, Ji, Wang, Zhaohua, Ren, Haixia, Gong, Yuteng, Wu, Chuan, Bai, Ying
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article gradient-order structure silicon anode sodium storage mechanism sodium-ion batteries universality of electrochemical reconstruction
Description
Résumé:© 2023 Wiley-VCH GmbH.
While cost-effective sodium-ion batteries (SIBs) with crystalline silicon anodes promise high theoretical capacities, they perform poorly because silicon stores sodium ineffectively (capacity <40 mAh g-1 ). To address this issue, herein an atomic-order structural-design tactic is adopted for obtaining unique multilevel gradient-ordered silicon (MGO-Si) by simple electrochemical reconstruction. In situ-formed short-range-, medium-range-, and long-range-ordered structures construct a stable MGO-Si, which contributes to favorable Na-Si interaction and fast ion diffusion channels. These characteristics afford a high reversible capacity (352.7 mAh g-1 at 50 mA g-1 ) and stable cycling performance (95.2% capacity retention after 4000 cycles), exhibiting record values among those reported for pure silicon electrodes. Sodium storage of MGO-Si involves an adsorption-intercalation mechanism, and a stepwise construction strategy of gradient-ordered structure further improves the specific capacity (339.5 mAh g-1 at 100 mA g-1 ). Reconstructed Si/C composites show a high reversible capacity of 449.5 mAh g-1 , significantly better than most carbonaceous anodes. The universality of this design principle is demonstrated for other inert or low-capacity materials (micro-Si, SiO2 , SiC, graphite, and TiO2 ), boosting their capacities by 1.5-6 times that of pristine materials, thereby providing new solutions to facilitate sodium storage capability for better-performing battery designs
Description:Date Revised 15.02.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202310270