Multifunctional Separator Enables High-Performance Sodium Metal Batteries in Carbonate-Based Electrolytes

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 5 vom: 29. Feb., Seite e2307645
1. Verfasser: Liu, Haoxuan (VerfasserIn)
Weitere Verfasser: Zheng, Xiaoyang, Du, Yumeng, Borrás, Marcela Chaki, Wu, Kuan, Konstantinov, Konstantin, Pang, Wei Kong, Chou, Shulei, Liu, Huakun, Dou, Shixue, Wu, Chao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article carbonate electrolytes metal-organic frameworks nanowires separators sodium metal batteries
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Sodium metal has become one of the most promising anodes for next-generation cheap and high-energy-density metal batteries; however, challenges caused by the uncontrollable sodium dendrite growth and fragile solid electrolyte interphase (SEI) restrict their large-scale practical applications in low-cost and wide-voltage-window carbonate electrolytes. Herein, a novel multifunctional separator with lightweight and high thinness is proposed, assembled by the cobalt-based metal-organic framework nanowires (Co-NWS), to replace the widely applied thick and heavy glass fiber separator. Benefitting from its abundant sodiophilic functional groups and densely stacked nanowires, Co-NWS not only exhibits outstanding electrolyte wettability and effectively induces uniform Na+ ion flux as a strong ion redistributor but also favors constructing the robust N,F-rich SEI layer. Satisfactorily, with 10 µL carbonate electrolyte, a Na|Co-NWS|Cu half-cell delivers stable cycling (over 260 cycles) with a high average Coulombic efficiency of 98%, and the symmetric cell shows a long cycle life of more than 500 h. Remarkably, the full cell shows a long-term life span (over 1500 cycles with 92% capacity retention) at high current density in the carbonate electrolyte. This work opens up a strategy for developing dendrite-free, low-cost, and long-life-span sodium metal batteries in carbonate-based electrolytes
Beschreibung:Date Revised 01.02.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202307645