EGST : Enhanced Geometric Structure Transformer for Point Cloud Registration

We explore the effect of geometric structure descriptors on extracting reliable correspondences and obtaining accurate registration for point cloud registration. The point cloud registration task involves the estimation of rigid transformation motion in unorganized point cloud, hence it is crucial t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 9 vom: 16. Aug., Seite 6222-6234
1. Verfasser: Yuan, Yongzhe (VerfasserIn)
Weitere Verfasser: Wu, Yue, Fan, Xiaolong, Gong, Maoguo, Ma, Wenping, Miao, Qiguang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM364634987
003 DE-627
005 20240801232622.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3329578  |2 doi 
028 5 2 |a pubmed24n1488.xml 
035 |a (DE-627)NLM364634987 
035 |a (NLM)37971922 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Yongzhe  |e verfasserin  |4 aut 
245 1 0 |a EGST  |b Enhanced Geometric Structure Transformer for Point Cloud Registration 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We explore the effect of geometric structure descriptors on extracting reliable correspondences and obtaining accurate registration for point cloud registration. The point cloud registration task involves the estimation of rigid transformation motion in unorganized point cloud, hence it is crucial to capture the contextual features of the geometric structure in point cloud. Recent coordinates-only methods ignore numerous geometric information in the point cloud which weaken ability to express the global context. We propose Enhanced Geometric Structure Transformer to learn enhanced contextual features of the geometric structure in point cloud and model the structure consistency between point clouds for extracting reliable correspondences, which encodes three explicit enhanced geometric structures and provides significant cues for point cloud registration. More importantly, we report empirical results that Enhanced Geometric Structure Transformer can learn meaningful geometric structure features using none of the following: (i) explicit positional embeddings, (ii) additional feature exchange module such as cross-attention, which can simplify network structure compared with plain Transformer. Extensive experiments on the synthetic dataset and real-world datasets illustrate that our method can achieve competitive results 
650 4 |a Journal Article 
700 1 |a Wu, Yue  |e verfasserin  |4 aut 
700 1 |a Fan, Xiaolong  |e verfasserin  |4 aut 
700 1 |a Gong, Maoguo  |e verfasserin  |4 aut 
700 1 |a Ma, Wenping  |e verfasserin  |4 aut 
700 1 |a Miao, Qiguang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 9 vom: 16. Aug., Seite 6222-6234  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:9  |g day:16  |g month:08  |g pages:6222-6234 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3329578  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 9  |b 16  |c 08  |h 6222-6234