Multi-Stage Asynchronous Federated Learning With Adaptive Differential Privacy

The fusion of federated learning and differential privacy can provide more comprehensive and rigorous privacy protection, thus attracting extensive interests from both academia and industry. However, facing the system-level challenge of device heterogeneity, most current synchronous FL paradigms exh...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 2 vom: 01. Jan., Seite 1243-1256
1. Verfasser: Li, Yanan (VerfasserIn)
Weitere Verfasser: Yang, Shusen, Ren, Xuebin, Shi, Liang, Zhao, Cong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM364476567
003 DE-627
005 20240114233018.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3332428  |2 doi 
028 5 2 |a pubmed24n1253.xml 
035 |a (DE-627)NLM364476567 
035 |a (NLM)37956007 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Yanan  |e verfasserin  |4 aut 
245 1 0 |a Multi-Stage Asynchronous Federated Learning With Adaptive Differential Privacy 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The fusion of federated learning and differential privacy can provide more comprehensive and rigorous privacy protection, thus attracting extensive interests from both academia and industry. However, facing the system-level challenge of device heterogeneity, most current synchronous FL paradigms exhibit low efficiency due to the straggler effect, which can be significantly reduced by Asynchronous FL (AFL). However, AFL has never been comprehensively studied, which imposes a major challenge in the utility optimization of DP-enhanced AFL. Here, theoretically motivated multi-stage adaptive private algorithms are proposed to improve the trade-off between model utility and privacy for DP-enhanced AFL. In particular, we first build two DP-enhanced AFL frameworks with consideration of universal factors for different adversary models. Then, we give a solid analysis on the model convergence of AFL, based on which, DP can be adaptively achieved with high utility. Through extensive experiments on different training models and benchmark datasets, we demonstrate that the proposed algorithms achieve the overall best performances and improve up to 24% test accuracy with the same privacy loss and have faster convergence compared with the state-of-the-art algorithms. Our frameworks provide an analytical way for private AFL and adapt to more complex FL application scenarios 
650 4 |a Journal Article 
700 1 |a Yang, Shusen  |e verfasserin  |4 aut 
700 1 |a Ren, Xuebin  |e verfasserin  |4 aut 
700 1 |a Shi, Liang  |e verfasserin  |4 aut 
700 1 |a Zhao, Cong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 2 vom: 01. Jan., Seite 1243-1256  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:2  |g day:01  |g month:01  |g pages:1243-1256 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3332428  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 2  |b 01  |c 01  |h 1243-1256