Multi-Stage Asynchronous Federated Learning With Adaptive Differential Privacy
The fusion of federated learning and differential privacy can provide more comprehensive and rigorous privacy protection, thus attracting extensive interests from both academia and industry. However, facing the system-level challenge of device heterogeneity, most current synchronous FL paradigms exh...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 2 vom: 01. Jan., Seite 1243-1256 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | The fusion of federated learning and differential privacy can provide more comprehensive and rigorous privacy protection, thus attracting extensive interests from both academia and industry. However, facing the system-level challenge of device heterogeneity, most current synchronous FL paradigms exhibit low efficiency due to the straggler effect, which can be significantly reduced by Asynchronous FL (AFL). However, AFL has never been comprehensively studied, which imposes a major challenge in the utility optimization of DP-enhanced AFL. Here, theoretically motivated multi-stage adaptive private algorithms are proposed to improve the trade-off between model utility and privacy for DP-enhanced AFL. In particular, we first build two DP-enhanced AFL frameworks with consideration of universal factors for different adversary models. Then, we give a solid analysis on the model convergence of AFL, based on which, DP can be adaptively achieved with high utility. Through extensive experiments on different training models and benchmark datasets, we demonstrate that the proposed algorithms achieve the overall best performances and improve up to 24% test accuracy with the same privacy loss and have faster convergence compared with the state-of-the-art algorithms. Our frameworks provide an analytical way for private AFL and adapt to more complex FL application scenarios |
---|---|
Beschreibung: | Date Revised 08.01.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2023.3332428 |