Approaching Theoretical Limits in the Performance of Printed P-Type CuI Transistors via Room Temperature Vacancy Engineering

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 51 vom: 15. Dez., Seite e2307206
1. Verfasser: Kwon, Yonghyun Albert (VerfasserIn)
Weitere Verfasser: Kim, Jin Hyeon, Barma, Sunil V, Lee, Keun Hyung, Jo, Sae Byeok, Cho, Jeong Ho
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article complementary metal-oxide-semiconductor logic circuits inorganic p-type semiconductors solution-processed electronics transparent electronics
LEADER 01000caa a22002652 4500
001 NLM364152508
003 DE-627
005 20231227135345.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202307206  |2 doi 
028 5 2 |a pubmed24n1234.xml 
035 |a (DE-627)NLM364152508 
035 |a (NLM)37923398 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kwon, Yonghyun Albert  |e verfasserin  |4 aut 
245 1 0 |a Approaching Theoretical Limits in the Performance of Printed P-Type CuI Transistors via Room Temperature Vacancy Engineering 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Development of a novel high performing inorganic p-type thin film transistor could pave the way for new transparent electronic devices. This complements the widely commercialized n-type counterparts, indium-gallium-zinc-oxide (IGZO). Of the few potential candidates, copper monoiodide (CuI) stands out. It boasts visible light transparency and high intrinsic hole mobility (>40 cm2 V-1 s-1 ), and is suitable for various low-temperature processes. However, the performance of reported CuI transistors is still below expected mobility, mainly due to the uncontrolled excess charge- and defect-scattering from thermodynamically favored formation of copper and iodine vacancies. Here, a solution-processed CuI transistor with a significantly improved mobility is reported. This enhancement is achieved through a room-temperature vacancy-engineering processing strategy on high-k dielectrics, sodium-embedded alumina. A thorough set of chemical, structural, optical, and electrical analyses elucidates the processing-dependent vacancy-modulation and its corresponding transport mechanism in CuI. This encompasses defect- and phonon-scattering, as well as the delocalization of charges in crystalline domains. As a result, the optimized CuI thin film transistors exhibit exceptionally high hole mobility of 21.6 ± 4.5 cm2 V-1 s-1 . Further, the successful operation of IGZO-CuI complementary logic gates confirms the applicability of the device 
650 4 |a Journal Article 
650 4 |a complementary metal-oxide-semiconductor logic circuits 
650 4 |a inorganic p-type semiconductors 
650 4 |a solution-processed electronics 
650 4 |a transparent electronics 
700 1 |a Kim, Jin Hyeon  |e verfasserin  |4 aut 
700 1 |a Barma, Sunil V  |e verfasserin  |4 aut 
700 1 |a Lee, Keun Hyung  |e verfasserin  |4 aut 
700 1 |a Jo, Sae Byeok  |e verfasserin  |4 aut 
700 1 |a Cho, Jeong Ho  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 51 vom: 15. Dez., Seite e2307206  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:51  |g day:15  |g month:12  |g pages:e2307206 
856 4 0 |u http://dx.doi.org/10.1002/adma.202307206  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 51  |b 15  |c 12  |h e2307206