Approaching Theoretical Limits in the Performance of Printed P-Type CuI Transistors via Room Temperature Vacancy Engineering

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 51 vom: 15. Dez., Seite e2307206
1. Verfasser: Kwon, Yonghyun Albert (VerfasserIn)
Weitere Verfasser: Kim, Jin Hyeon, Barma, Sunil V, Lee, Keun Hyung, Jo, Sae Byeok, Cho, Jeong Ho
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article complementary metal-oxide-semiconductor logic circuits inorganic p-type semiconductors solution-processed electronics transparent electronics
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Development of a novel high performing inorganic p-type thin film transistor could pave the way for new transparent electronic devices. This complements the widely commercialized n-type counterparts, indium-gallium-zinc-oxide (IGZO). Of the few potential candidates, copper monoiodide (CuI) stands out. It boasts visible light transparency and high intrinsic hole mobility (>40 cm2 V-1 s-1 ), and is suitable for various low-temperature processes. However, the performance of reported CuI transistors is still below expected mobility, mainly due to the uncontrolled excess charge- and defect-scattering from thermodynamically favored formation of copper and iodine vacancies. Here, a solution-processed CuI transistor with a significantly improved mobility is reported. This enhancement is achieved through a room-temperature vacancy-engineering processing strategy on high-k dielectrics, sodium-embedded alumina. A thorough set of chemical, structural, optical, and electrical analyses elucidates the processing-dependent vacancy-modulation and its corresponding transport mechanism in CuI. This encompasses defect- and phonon-scattering, as well as the delocalization of charges in crystalline domains. As a result, the optimized CuI thin film transistors exhibit exceptionally high hole mobility of 21.6 ± 4.5 cm2 V-1 s-1 . Further, the successful operation of IGZO-CuI complementary logic gates confirms the applicability of the device
Beschreibung:Date Revised 21.12.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202307206