Heterointerface Design of Perovskite Single Crystals for High-Performance X-Ray Imaging

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 3 vom: 17. Jan., Seite e2305513
1. Verfasser: Zhang, Xiaojie (VerfasserIn)
Weitere Verfasser: Chu, Depeng, Jia, Binxia, Zhao, Zeqin, Pi, Jiacheng, Yang, Zhou, Li, Yaohui, Hao, Jinglu, Shi, Ruixin, Dong, Xiaofeng, Liang, Yuqian, Feng, Jiangshan, Najar, Adel, Liu, Yucheng, Liu, Shengzhong Frank
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article X-ray detection halide perovskite heterointerface design single crystal
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Metal halide perovskite single crystals (MHP-SCs) are known for their facile fabrication into large sizes using inexpensive solution methods. Owing to their combination of large mobility-lifetime products and strong X-ray absorption, they are considered promising materials for efficient X-ray detection. However, they suffer from large dark currents and severe ion migration, which limit their sensitivity and stability in critical X-ray detection applications. Herein, a heterointerface design is proposed to reduce both the dark current and ion migration by forming a heterojunction. In addition, the carrier transport performance is significantly improved using heterointerface engineering by designing a gradient band structure in the SCs. The SC heterojunction detectors exhibit a high sensitivity of 3.98 × 105 µC Gyair -1 cm-2 with a low detection limit of 12.2 nGyair s-1 and a high spatial resolution of 10.2 lp mm-1 during imaging. These values are among the highest reported for state-of-the-art MHP X-ray detectors. Moreover, the detectors show excellent stability under continuous X-ray irradiation and maintainclear X-ray imaging after 240 d. This study provides novel insights into the design and fabrication of X-ray detectors with high detection efficiency and stability, which are beneficial for developing inexpensive, high-resolution X-ray imaging equipment
Beschreibung:Date Revised 18.01.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202305513