|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM36370597X |
003 |
DE-627 |
005 |
20240425232433.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202308802
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1386.xml
|
035 |
|
|
|a (DE-627)NLM36370597X
|
035 |
|
|
|a (NLM)37878366
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhu, Yeshu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Controlled Growth of Single-Crystal Graphene Wafers on Twin-Boundary-Free Cu(111) Substrates
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 25.04.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley‐VCH GmbH.
|
520 |
|
|
|a Single-crystal graphene (SCG) wafers are needed to enable mass-electronics and optoelectronics owing to their excellent properties and compatibility with silicon-based technology. Controlled synthesis of high-quality SCG wafers can be done exploiting single-crystal Cu(111) substrates as epitaxial growth substrates recently. However, current Cu(111) films prepared by magnetron sputtering on single-crystal sapphire wafers still suffer from in-plane twin boundaries, which degrade the SCG chemical vapor deposition. Here, it is shown how to eliminate twin boundaries on Cu and achieve 4 in. Cu(111) wafers with ≈95% crystallinity. The introduction of a temperature gradient on Cu films with designed texture during annealing drives abnormal grain growth across the whole Cu wafer. In-plane twin boundaries are eliminated via migration of out-of-plane grain boundaries. SCG wafers grown on the resulting single-crystal Cu(111) substrates exhibit improved crystallinity with >97% aligned graphene domains. As-synthesized SCG wafers exhibit an average carrier mobility up to 7284 cm2 V-1 s-1 at room temperature from 103 devices and a uniform sheet resistance with only 5% deviation in 4 in. region
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a CVD graphene
|
650 |
|
4 |
|a graphene wafer
|
650 |
|
4 |
|a single‐crystal Cu(111)
|
700 |
1 |
|
|a Zhang, Jincan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheng, Ting
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Jilin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Duan, Hongwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Zhaoning
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shao, Jiaxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Shiwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, Mingyue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Haotian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Ang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Sheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Balci, Osman
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shinde, Sachin M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ramezani, Hamideh
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Luda
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Li
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ferrari, Andrea C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yakobson, Boris I
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Hailin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jia, Kaicheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Zhongfan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 17 vom: 01. Apr., Seite e2308802
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:17
|g day:01
|g month:04
|g pages:e2308802
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202308802
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 17
|b 01
|c 04
|h e2308802
|