Scalable SoftGroup for 3D Instance Segmentation on Point Clouds

This paper considers a network referred to as SoftGroup for accurate and scalable 3D instance segmentation. Existing state-of-the-art methods produce hard semantic predictions followed by grouping instance segmentation results. Unfortunately, errors stemming from hard decisions propagate into the gr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 4 vom: 09. März, Seite 1981-1995
1. Verfasser: Vu, Thang (VerfasserIn)
Weitere Verfasser: Kim, Kookhoi, Nguyen, Thanh, Luu, Tung M, Kim, Junyeong, Yoo, Chang D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM363546243
003 DE-627
005 20240307232029.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3326189  |2 doi 
028 5 2 |a pubmed24n1319.xml 
035 |a (DE-627)NLM363546243 
035 |a (NLM)37862277 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vu, Thang  |e verfasserin  |4 aut 
245 1 0 |a Scalable SoftGroup for 3D Instance Segmentation on Point Clouds 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper considers a network referred to as SoftGroup for accurate and scalable 3D instance segmentation. Existing state-of-the-art methods produce hard semantic predictions followed by grouping instance segmentation results. Unfortunately, errors stemming from hard decisions propagate into the grouping, resulting in poor overlap between predicted instances and ground truth and substantial false positives. To address the abovementioned problems, SoftGroup allows each point to be associated with multiple classes to mitigate the uncertainty stemming from semantic prediction. It also suppresses false positive instances by learning to categorize them as background. Regarding scalability, the existing fast methods require computational time on the order of tens of seconds on large-scale scenes, which is unsatisfactory and far from applicable for real-time. Our finding is that the k-Nearest Neighbor ( k-NN) module, which serves as the prerequisite of grouping, introduces a computational bottleneck. SoftGroup is extended to resolve this computational bottleneck, referred to as SoftGroup++. The proposed SoftGroup++ reduces time complexity with octree k-NN and reduces search space with class-aware pyramid scaling and late devoxelization. Experimental results on various indoor and outdoor datasets demonstrate the efficacy and generality of the proposed SoftGroup and SoftGroup++. Their performances surpass the best-performing baseline by a large margin (6%  ∼  16%) in terms of AP 50. On datasets with large-scale scenes, SoftGroup++ achieves a 6× speed boost on average compared to SoftGroup. Furthermore, SoftGroup can be extended to perform object detection and panoptic segmentation with nontrivial improvements over existing methods 
650 4 |a Journal Article 
700 1 |a Kim, Kookhoi  |e verfasserin  |4 aut 
700 1 |a Nguyen, Thanh  |e verfasserin  |4 aut 
700 1 |a Luu, Tung M  |e verfasserin  |4 aut 
700 1 |a Kim, Junyeong  |e verfasserin  |4 aut 
700 1 |a Yoo, Chang D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 4 vom: 09. März, Seite 1981-1995  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:4  |g day:09  |g month:03  |g pages:1981-1995 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3326189  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 4  |b 09  |c 03  |h 1981-1995