Plant Parasitic Nematode Identification in Complex Samples with Deep Learning

© 2023 Sahil Agarwal et al., published by Sciendo.

Bibliographische Detailangaben
Veröffentlicht in:Journal of nematology. - 1969. - 55(2023), 1 vom: 27. Feb., Seite 20230045
1. Verfasser: Agarwal, Sahil (VerfasserIn)
Weitere Verfasser: Curran, Zachary C, Yu, Guohao, Mishra, Shova, Baniya, Anil, Bogale, Mesfin, Hughes, Kody, Salichs, Oscar, Zare, Alina, Jiang, Zhe, DiGennaro, Peter
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of nematology
Schlagworte:Journal Article deep learning detection diagnosis identification method technique
LEADER 01000caa a22002652 4500
001 NLM363420142
003 DE-627
005 20240909233329.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.2478/jofnem-2023-0045  |2 doi 
028 5 2 |a pubmed24n1528.xml 
035 |a (DE-627)NLM363420142 
035 |a (NLM)37849469 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Agarwal, Sahil  |e verfasserin  |4 aut 
245 1 0 |a Plant Parasitic Nematode Identification in Complex Samples with Deep Learning 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.09.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Sahil Agarwal et al., published by Sciendo. 
520 |a Plant parasitic nematodes are significant contributors to yield loss worldwide, causing devastating losses to every crop species, in every climate. Mitigating these losses requires swift and informed management strategies, centered on identification and quantification of field populations. Current plant parasitic nematode identification methods rely heavily on manual analyses of microscope images by a highly trained nematologist. This mode is not only expensive and time consuming, but often excludes the possibility of widely sharing and disseminating results to inform regional trends and potential emergent issues. This work presents a new public dataset containing annotated images of plant parasitic nematodes from heterologous soil extractions. This dataset serves to propagate new automated methodologies or speedier plant parasitic nematode identification using multiple deep learning object detection models and offers a path towards widely shared tools, results, and meta-analyses 
650 4 |a Journal Article 
650 4 |a deep learning 
650 4 |a detection 
650 4 |a diagnosis 
650 4 |a identification 
650 4 |a method 
650 4 |a technique 
700 1 |a Curran, Zachary C  |e verfasserin  |4 aut 
700 1 |a Yu, Guohao  |e verfasserin  |4 aut 
700 1 |a Mishra, Shova  |e verfasserin  |4 aut 
700 1 |a Baniya, Anil  |e verfasserin  |4 aut 
700 1 |a Bogale, Mesfin  |e verfasserin  |4 aut 
700 1 |a Hughes, Kody  |e verfasserin  |4 aut 
700 1 |a Salichs, Oscar  |e verfasserin  |4 aut 
700 1 |a Zare, Alina  |e verfasserin  |4 aut 
700 1 |a Jiang, Zhe  |e verfasserin  |4 aut 
700 1 |a DiGennaro, Peter  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of nematology  |d 1969  |g 55(2023), 1 vom: 27. Feb., Seite 20230045  |w (DE-627)NLM098196421  |x 0022-300X  |7 nnns 
773 1 8 |g volume:55  |g year:2023  |g number:1  |g day:27  |g month:02  |g pages:20230045 
856 4 0 |u http://dx.doi.org/10.2478/jofnem-2023-0045  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 55  |j 2023  |e 1  |b 27  |c 02  |h 20230045