Plant Parasitic Nematode Identification in Complex Samples with Deep Learning

© 2023 Sahil Agarwal et al., published by Sciendo.

Bibliographische Detailangaben
Veröffentlicht in:Journal of nematology. - 1969. - 55(2023), 1 vom: 27. Feb., Seite 20230045
1. Verfasser: Agarwal, Sahil (VerfasserIn)
Weitere Verfasser: Curran, Zachary C, Yu, Guohao, Mishra, Shova, Baniya, Anil, Bogale, Mesfin, Hughes, Kody, Salichs, Oscar, Zare, Alina, Jiang, Zhe, DiGennaro, Peter
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of nematology
Schlagworte:Journal Article deep learning detection diagnosis identification method technique
Beschreibung
Zusammenfassung:© 2023 Sahil Agarwal et al., published by Sciendo.
Plant parasitic nematodes are significant contributors to yield loss worldwide, causing devastating losses to every crop species, in every climate. Mitigating these losses requires swift and informed management strategies, centered on identification and quantification of field populations. Current plant parasitic nematode identification methods rely heavily on manual analyses of microscope images by a highly trained nematologist. This mode is not only expensive and time consuming, but often excludes the possibility of widely sharing and disseminating results to inform regional trends and potential emergent issues. This work presents a new public dataset containing annotated images of plant parasitic nematodes from heterologous soil extractions. This dataset serves to propagate new automated methodologies or speedier plant parasitic nematode identification using multiple deep learning object detection models and offers a path towards widely shared tools, results, and meta-analyses
Beschreibung:Date Revised 08.09.2024
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0022-300X
DOI:10.2478/jofnem-2023-0045