Sb-Doped Cs3 TbCl6 Nanocrystals for Highly Efficient Narrow-Band Green Emission and X-Ray Imaging

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 2 vom: 01. Jan., Seite e2302140
1. Verfasser: Zhou, Wei (VerfasserIn)
Weitere Verfasser: Yu, Yang, Han, Peigeng, Li, Cheng, Wu, Tong, Ding, Zhiling, Liu, Runze, Zhang, Ruiling, Luo, Cheng, Li, Hui, Zhao, Kun, Han, Keli, Lu, Ruifeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article X-ray imaging nanoscintillators lanthanide chloride nanocrystals localized electronic structure narrow-band green emission thermally boosting energy transfer
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Metal halide nanocrystals (NCs) with high photoluminescence quantum yield (PLQY) are desirable for lighting, display, and X-ray detection. Herein, the novel lanthanide-based halide NCs are committed to designing and optimizing the optical and scintillating properties, so as to unravel the PL origin, exciton dynamics, and optoelectronic applications. Sb-doped zero-dimensional (0D) Cs3 TbCl6 NCs exhibit a green emission with a narrow full width of half maximum of 8.6 nm, and the best PLQY of 48.1% is about three times higher than that of undoped NCs. Experiments and theoretical calculations indicate that 0D crystalline and electronic structures make the exciton highly localized on [TbCl6 ]3- octahedron, which boosts the Cl- -Tb3+ charge transfer process, thus resulting in bright Tb3+ emission. More importantly, the introduction of Sb3+ not only facilitates the photon absorption transition, but also builds an effective thermally boosting energy transfer channel assisted by [SbCl6 ]3- -induced self-trapped state, which is responsible for the PL enhancement. The high luminescence efficiency and negligible self-absorption of the Cs3 TbCl6 : Sb nanoscintillator enable a more sensitive X-ray detection response compared with undoped sample. The study opens a new perspective to deeply understand the excited state dynamics of metal halide NCs, which helps to design high-performance luminescent lanthanide-based nanomaterials
Beschreibung:Date Revised 11.01.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202302140