SC-DepthV3 : Robust Self-Supervised Monocular Depth Estimation for Dynamic Scenes

Self-supervised monocular depth estimation has shown impressive results in static scenes. It relies on the multi-view consistency assumption for training networks, however, that is violated in dynamic object regions and occlusions. Consequently, existing methods show poor accuracy in dynamic scenes,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2023), 1 vom: 06. Jan., Seite 497-508
1. Verfasser: Sun, Libo (VerfasserIn)
Weitere Verfasser: Bian, Jia-Wang, Zhan, Huangying, Yin, Wei, Reid, Ian, Shen, Chunhua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM362949867
003 DE-627
005 20231226092317.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3322549  |2 doi 
028 5 2 |a pubmed24n1209.xml 
035 |a (DE-627)NLM362949867 
035 |a (NLM)37801376 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Libo  |e verfasserin  |4 aut 
245 1 0 |a SC-DepthV3  |b Robust Self-Supervised Monocular Depth Estimation for Dynamic Scenes 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Self-supervised monocular depth estimation has shown impressive results in static scenes. It relies on the multi-view consistency assumption for training networks, however, that is violated in dynamic object regions and occlusions. Consequently, existing methods show poor accuracy in dynamic scenes, and the estimated depth map is blurred at object boundaries because they are usually occluded in other training views. In this paper, we propose SC-DepthV3 for addressing the challenges. Specifically, we introduce an external pretrained monocular depth estimation model for generating single-image depth prior, namely pseudo-depth, based on which we propose novel losses to boost self-supervised training. As a result, our model can predict sharp and accurate depth maps, even when training from monocular videos of highly dynamic scenes. We demonstrate the significantly superior performance of our method over previous methods on six challenging datasets, and we provide detailed ablation studies for the proposed terms 
650 4 |a Journal Article 
700 1 |a Bian, Jia-Wang  |e verfasserin  |4 aut 
700 1 |a Zhan, Huangying  |e verfasserin  |4 aut 
700 1 |a Yin, Wei  |e verfasserin  |4 aut 
700 1 |a Reid, Ian  |e verfasserin  |4 aut 
700 1 |a Shen, Chunhua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2023), 1 vom: 06. Jan., Seite 497-508  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2023  |g number:1  |g day:06  |g month:01  |g pages:497-508 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3322549  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2023  |e 1  |b 06  |c 01  |h 497-508