RobustMat : Neural Diffusion for Street Landmark Patch Matching Under Challenging Environments

For autonomous vehicles (AVs), visual perception techniques based on sensors like cameras play crucial roles in information acquisition and processing. In various computer perception tasks for AVs, it may be helpful to match landmark patches taken by an onboard camera with other landmark patches cap...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 29., Seite 5550-5563
1. Verfasser: She, Rui (VerfasserIn)
Weitere Verfasser: Kang, Qiyu, Wang, Sijie, Yang, Yuan-Rui, Zhao, Kai, Song, Yang, Tay, Wee Peng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM362700745
003 DE-627
005 20231226091759.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3318963  |2 doi 
028 5 2 |a pubmed24n1208.xml 
035 |a (DE-627)NLM362700745 
035 |a (NLM)37773901 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a She, Rui  |e verfasserin  |4 aut 
245 1 0 |a RobustMat  |b Neural Diffusion for Street Landmark Patch Matching Under Challenging Environments 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a For autonomous vehicles (AVs), visual perception techniques based on sensors like cameras play crucial roles in information acquisition and processing. In various computer perception tasks for AVs, it may be helpful to match landmark patches taken by an onboard camera with other landmark patches captured at a different time or saved in a street scene image database. To perform matching under challenging driving environments caused by changing seasons, weather, and illumination, we utilize the spatial neighborhood information of each patch. We propose an approach, named RobustMat, which derives its robustness to perturbations from neural differential equations. A convolutional neural ODE diffusion module is used to learn the feature representation for the landmark patches. A graph neural PDE diffusion module then aggregates information from neighboring landmark patches in the street scene. Finally, feature similarity learning outputs the final matching score. Our approach is evaluated on several street scene datasets and demonstrated to achieve state-of-the-art matching results under environmental perturbations 
650 4 |a Journal Article 
700 1 |a Kang, Qiyu  |e verfasserin  |4 aut 
700 1 |a Wang, Sijie  |e verfasserin  |4 aut 
700 1 |a Yang, Yuan-Rui  |e verfasserin  |4 aut 
700 1 |a Zhao, Kai  |e verfasserin  |4 aut 
700 1 |a Song, Yang  |e verfasserin  |4 aut 
700 1 |a Tay, Wee Peng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 29., Seite 5550-5563  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:29  |g pages:5550-5563 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3318963  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 29  |h 5550-5563