New insights into the genetic manipulation of the R2R3-MYB and CHI gene families on anthocyanin pigmentation in Petunia hybrida
Copyright © 2023 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 203(2023) vom: 01. Okt., Seite 108000 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article ANTHOCYANIN-4 (AN4) CHALCONE ISOMERASE (CHI) CRISPR/Cas9 Flower coloration R2R3-MYB transcription factor Sucrose induction |
Zusammenfassung: | Copyright © 2023 Elsevier Masson SAS. All rights reserved. Several R2R3-MYB genes control anthocyanin pigmentation in petunia, and ANTHOCYANIN-2 (AN2) is treated as the main player in petal limbs. However, the actual roles of R2R3-MYBs in the coloration of different floral tissues in the so called "darkly-veined" petunias are still not clear. The genetic background and expression of AN2 paralogs from various petunias with different color patterns were identified. All "darkly-veined" genotypes have the identical mutation in the AN2 gene, but express a different functional paralog - ANTHOCYANIN-4 (AN4) - abundantly in flowers. Constitutive overexpression of PhAN4 in this petunia resulted not only in a fully colored flower but also in a clearly visible pigmentation in the green tissue and roots, which can be rapidly increased by stress conditions. Suppression of AN4 gene resulted in discolored petals and whitish anthers. Interestingly, when a similar white flower phenotype was achieved by knockout of an essential structural gene of anthocyanin biosynthesis - CHALCONE ISOMERASE-A (CHI-A) - the plant responded directly by upregulating of another paralogs - DEEP PURPLE (DPL) and PURPLE HAZE (PHZ). Moreover, we also found that CHI-B can partially substitute for CHI-A in anthers, but not in vegetative tissues. Further, no significant effects on the longevity of white or enhanced colored flowers were observed compared with the wild type. We concluded that endogenous up-regulation of AN4 leads to the restoration of petal color in the "darkly-veined" phenotypes as a result of the breeding process under human selection, and CHI-B is a backup for CHI-A acitvity in some floral tissues |
---|---|
Beschreibung: | Date Revised 21.10.2023 published: Print-Electronic Citation Status Publisher |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2023.108000 |