Collaborative Contrastive Refining for Weakly Supervised Person Search

Weakly supervised person search involves training a model with only bounding box annotations, without human-annotated identities. Clustering algorithms are commonly used to assign pseudo-labels to facilitate this task. However, inaccurate pseudo-labels and imbalanced identity distributions can resul...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 29., Seite 4951-4963
1. Verfasser: Jia, Chengyou (VerfasserIn)
Weitere Verfasser: Luo, Minnan, Yan, Caixia, Zhu, Linchao, Chang, Xiaojun, Zheng, Qinghua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM361410727
003 DE-627
005 20231226085059.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3308393  |2 doi 
028 5 2 |a pubmed24n1204.xml 
035 |a (DE-627)NLM361410727 
035 |a (NLM)37643102 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jia, Chengyou  |e verfasserin  |4 aut 
245 1 0 |a Collaborative Contrastive Refining for Weakly Supervised Person Search 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Weakly supervised person search involves training a model with only bounding box annotations, without human-annotated identities. Clustering algorithms are commonly used to assign pseudo-labels to facilitate this task. However, inaccurate pseudo-labels and imbalanced identity distributions can result in severe label and sample noise. In this work, we propose a novel Collaborative Contrastive Refining (CCR) weakly-supervised framework for person search that jointly refines pseudo-labels and the sample-learning process with different contrastive strategies. Specifically, we adopt a hybrid contrastive strategy that leverages both visual and context clues to refine pseudo-labels, and leverage the sample-mining and noise-contrastive strategy to reduce the negative impact of imbalanced distributions by distinguishing positive samples and noise samples. Our method brings two main advantages: 1) it facilitates better clustering results for refining pseudo-labels by exploring the hybrid similarity; 2) it is better at distinguishing query samples and noise samples for refining the sample-learning process. Extensive experiments demonstrate the superiority of our approach over the state-of-the-art weakly supervised methods by a large margin (more than 3% mAP on CUHK-SYSU). Moreover, by leveraging more diverse unlabeled data, our method achieves comparable or even better performance than the state-of-the-art supervised methods 
650 4 |a Journal Article 
700 1 |a Luo, Minnan  |e verfasserin  |4 aut 
700 1 |a Yan, Caixia  |e verfasserin  |4 aut 
700 1 |a Zhu, Linchao  |e verfasserin  |4 aut 
700 1 |a Chang, Xiaojun  |e verfasserin  |4 aut 
700 1 |a Zheng, Qinghua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 29., Seite 4951-4963  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:29  |g pages:4951-4963 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3308393  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 29  |h 4951-4963