|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM361410727 |
003 |
DE-627 |
005 |
20231226085059.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2023.3308393
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1204.xml
|
035 |
|
|
|a (DE-627)NLM361410727
|
035 |
|
|
|a (NLM)37643102
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Jia, Chengyou
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Collaborative Contrastive Refining for Weakly Supervised Person Search
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.09.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Weakly supervised person search involves training a model with only bounding box annotations, without human-annotated identities. Clustering algorithms are commonly used to assign pseudo-labels to facilitate this task. However, inaccurate pseudo-labels and imbalanced identity distributions can result in severe label and sample noise. In this work, we propose a novel Collaborative Contrastive Refining (CCR) weakly-supervised framework for person search that jointly refines pseudo-labels and the sample-learning process with different contrastive strategies. Specifically, we adopt a hybrid contrastive strategy that leverages both visual and context clues to refine pseudo-labels, and leverage the sample-mining and noise-contrastive strategy to reduce the negative impact of imbalanced distributions by distinguishing positive samples and noise samples. Our method brings two main advantages: 1) it facilitates better clustering results for refining pseudo-labels by exploring the hybrid similarity; 2) it is better at distinguishing query samples and noise samples for refining the sample-learning process. Extensive experiments demonstrate the superiority of our approach over the state-of-the-art weakly supervised methods by a large margin (more than 3% mAP on CUHK-SYSU). Moreover, by leveraging more diverse unlabeled data, our method achieves comparable or even better performance than the state-of-the-art supervised methods
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Luo, Minnan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Caixia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Linchao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chang, Xiaojun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Qinghua
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 32(2023) vom: 29., Seite 4951-4963
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2023
|g day:29
|g pages:4951-4963
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2023.3308393
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2023
|b 29
|h 4951-4963
|