| 
 | 
 | 
 | 
| LEADER | 
01000caa a22002652c 4500 | 
| 001 | 
NLM361410727 | 
| 003 | 
DE-627 | 
| 005 | 
20250305051608.0 | 
| 007 | 
cr uuu---uuuuu | 
| 008 | 
231226s2023    xx |||||o     00| ||eng c | 
| 024 | 
7 | 
  | 
|a 10.1109/TIP.2023.3308393 
  |2 doi 
   | 
| 028 | 
5 | 
2 | 
|a pubmed25n1204.xml 
   | 
| 035 | 
  | 
  | 
|a (DE-627)NLM361410727 
   | 
| 035 | 
  | 
  | 
|a (NLM)37643102 
   | 
| 040 | 
  | 
  | 
|a DE-627 
  |b ger 
  |c DE-627 
  |e rakwb 
   | 
| 041 | 
  | 
  | 
|a eng 
   | 
| 100 | 
1 | 
  | 
|a Jia, Chengyou 
  |e verfasserin 
  |4 aut 
   | 
| 245 | 
1 | 
0 | 
|a Collaborative Contrastive Refining for Weakly Supervised Person Search 
   | 
| 264 | 
  | 
1 | 
|c 2023 
   | 
| 336 | 
  | 
  | 
|a Text 
  |b txt 
  |2 rdacontent 
   | 
| 337 | 
  | 
  | 
|a ƒaComputermedien 
  |b c 
  |2 rdamedia 
   | 
| 338 | 
  | 
  | 
|a ƒa Online-Ressource 
  |b cr 
  |2 rdacarrier 
   | 
| 500 | 
  | 
  | 
|a Date Revised 07.09.2023 
   | 
| 500 | 
  | 
  | 
|a published: Print-Electronic 
   | 
| 500 | 
  | 
  | 
|a Citation Status PubMed-not-MEDLINE 
   | 
| 520 | 
  | 
  | 
|a Weakly supervised person search involves training a model with only bounding box annotations, without human-annotated identities. Clustering algorithms are commonly used to assign pseudo-labels to facilitate this task. However, inaccurate pseudo-labels and imbalanced identity distributions can result in severe label and sample noise. In this work, we propose a novel Collaborative Contrastive Refining (CCR) weakly-supervised framework for person search that jointly refines pseudo-labels and the sample-learning process with different contrastive strategies. Specifically, we adopt a hybrid contrastive strategy that leverages both visual and context clues to refine pseudo-labels, and leverage the sample-mining and noise-contrastive strategy to reduce the negative impact of imbalanced distributions by distinguishing positive samples and noise samples. Our method brings two main advantages: 1) it facilitates better clustering results for refining pseudo-labels by exploring the hybrid similarity; 2) it is better at distinguishing query samples and noise samples for refining the sample-learning process. Extensive experiments demonstrate the superiority of our approach over the state-of-the-art weakly supervised methods by a large margin (more than 3% mAP on CUHK-SYSU). Moreover, by leveraging more diverse unlabeled data, our method achieves comparable or even better performance than the state-of-the-art supervised methods 
   | 
| 650 | 
  | 
4 | 
|a Journal Article 
   | 
| 700 | 
1 | 
  | 
|a Luo, Minnan 
  |e verfasserin 
  |4 aut 
   | 
| 700 | 
1 | 
  | 
|a Yan, Caixia 
  |e verfasserin 
  |4 aut 
   | 
| 700 | 
1 | 
  | 
|a Zhu, Linchao 
  |e verfasserin 
  |4 aut 
   | 
| 700 | 
1 | 
  | 
|a Chang, Xiaojun 
  |e verfasserin 
  |4 aut 
   | 
| 700 | 
1 | 
  | 
|a Zheng, Qinghua 
  |e verfasserin 
  |4 aut 
   | 
| 773 | 
0 | 
8 | 
|i Enthalten in 
  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 
  |d 1992 
  |g 32(2023) vom: 04., Seite 4951-4963 
  |w (DE-627)NLM09821456X 
  |x 1941-0042 
  |7 nnas 
   | 
| 773 | 
1 | 
8 | 
|g volume:32 
  |g year:2023 
  |g day:04 
  |g pages:4951-4963 
   | 
| 856 | 
4 | 
0 | 
|u http://dx.doi.org/10.1109/TIP.2023.3308393 
  |3 Volltext 
   | 
| 912 | 
  | 
  | 
|a GBV_USEFLAG_A 
   | 
| 912 | 
  | 
  | 
|a SYSFLAG_A 
   | 
| 912 | 
  | 
  | 
|a GBV_NLM 
   | 
| 912 | 
  | 
  | 
|a GBV_ILN_350 
   | 
| 951 | 
  | 
  | 
|a AR 
   | 
| 952 | 
  | 
  | 
|d 32 
  |j 2023 
  |b 04 
  |h 4951-4963 
   |