Collaborative Contrastive Refining for Weakly Supervised Person Search

Weakly supervised person search involves training a model with only bounding box annotations, without human-annotated identities. Clustering algorithms are commonly used to assign pseudo-labels to facilitate this task. However, inaccurate pseudo-labels and imbalanced identity distributions can resul...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 04., Seite 4951-4963
Auteur principal: Jia, Chengyou (Auteur)
Autres auteurs: Luo, Minnan, Yan, Caixia, Zhu, Linchao, Chang, Xiaojun, Zheng, Qinghua
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
Description
Résumé:Weakly supervised person search involves training a model with only bounding box annotations, without human-annotated identities. Clustering algorithms are commonly used to assign pseudo-labels to facilitate this task. However, inaccurate pseudo-labels and imbalanced identity distributions can result in severe label and sample noise. In this work, we propose a novel Collaborative Contrastive Refining (CCR) weakly-supervised framework for person search that jointly refines pseudo-labels and the sample-learning process with different contrastive strategies. Specifically, we adopt a hybrid contrastive strategy that leverages both visual and context clues to refine pseudo-labels, and leverage the sample-mining and noise-contrastive strategy to reduce the negative impact of imbalanced distributions by distinguishing positive samples and noise samples. Our method brings two main advantages: 1) it facilitates better clustering results for refining pseudo-labels by exploring the hybrid similarity; 2) it is better at distinguishing query samples and noise samples for refining the sample-learning process. Extensive experiments demonstrate the superiority of our approach over the state-of-the-art weakly supervised methods by a large margin (more than 3% mAP on CUHK-SYSU). Moreover, by leveraging more diverse unlabeled data, our method achieves comparable or even better performance than the state-of-the-art supervised methods
Description:Date Revised 07.09.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2023.3308393