MMT : Cross Domain Few-Shot Learning via Meta-Memory Transfer

Few-shot learning aims to recognize novel categories solely relying on a few labeled samples, with existing few-shot methods primarily focusing on the categories sampled from the same distribution. Nevertheless, this assumption cannot always be ensured, and the actual domain shift problem significan...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 18. Dez., Seite 15018-15035
1. Verfasser: Wang, Wenjian (VerfasserIn)
Weitere Verfasser: Duan, Lijuan, Wang, Yuxi, Fan, Junsong, Zhang, Zhaoxiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM360937063
003 DE-627
005 20231226084102.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3306352  |2 doi 
028 5 2 |a pubmed24n1203.xml 
035 |a (DE-627)NLM360937063 
035 |a (NLM)37594873 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Wenjian  |e verfasserin  |4 aut 
245 1 0 |a MMT  |b Cross Domain Few-Shot Learning via Meta-Memory Transfer 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Few-shot learning aims to recognize novel categories solely relying on a few labeled samples, with existing few-shot methods primarily focusing on the categories sampled from the same distribution. Nevertheless, this assumption cannot always be ensured, and the actual domain shift problem significantly reduces the performance of few-shot learning. To remedy this problem, we investigate an interesting and challenging cross-domain few-shot learning task, where the training and testing tasks employ different domains. Specifically, we propose a Meta-Memory scheme to bridge the domain gap between source and target domains, leveraging style-memory and content-memory components. The former stores intra-domain style information from source domain instances and provides a richer feature distribution. The latter stores semantic information through exploration of knowledge of different categories. Under the contrastive learning strategy, our model effectively alleviates the cross-domain problem in few-shot learning. Extensive experiments demonstrate that our proposed method achieves state-of-the-art performance on cross-domain few-shot semantic segmentation tasks on the COCO-20 i, PASCAL-5 i, FSS-1000, and SUIM datasets and positively affects few-shot classification tasks on Meta-Dataset 
650 4 |a Journal Article 
700 1 |a Duan, Lijuan  |e verfasserin  |4 aut 
700 1 |a Wang, Yuxi  |e verfasserin  |4 aut 
700 1 |a Fan, Junsong  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhaoxiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 18. Dez., Seite 15018-15035  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:18  |g month:12  |g pages:15018-15035 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3306352  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 18  |c 12  |h 15018-15035