ActiveZero++ : Mixed Domain Learning Stereo and Confidence-Based Depth Completion With Zero Annotation

Learning-based stereo methods usually require a large scale dataset with depth, however obtaining accurate depth in the real domain is difficult, but groundtruth depth is readily available in the simulation domain. In this article we propose a new framework, ActiveZero++, which is a mixed domain lea...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 15. Dez., Seite 14098-14113
1. Verfasser: Chen, Rui (VerfasserIn)
Weitere Verfasser: Liu, Isabella, Yang, Edward, Tao, Jianyu, Zhang, Xiaoshuai, Ran, Qing, Liu, Zhu, Xu, Jing, Su, Hao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM360812848
003 DE-627
005 20231226083820.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3305399  |2 doi 
028 5 2 |a pubmed24n1202.xml 
035 |a (DE-627)NLM360812848 
035 |a (NLM)37581967 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Rui  |e verfasserin  |4 aut 
245 1 0 |a ActiveZero++  |b Mixed Domain Learning Stereo and Confidence-Based Depth Completion With Zero Annotation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Learning-based stereo methods usually require a large scale dataset with depth, however obtaining accurate depth in the real domain is difficult, but groundtruth depth is readily available in the simulation domain. In this article we propose a new framework, ActiveZero++, which is a mixed domain learning solution for active stereovision systems that requires no real world depth annotation. In the simulation domain, we use a combination of supervised disparity loss and self-supervised loss on a shape primitives dataset. By contrast, in the real domain, we only use self-supervised loss on a dataset that is out-of-distribution from either training simulation data or test real data. To improve the robustness and accuracy of our reprojection loss in hard-to-perceive regions, our method introduces a novel self-supervised loss called temporal IR reprojection. Further, we propose the confidence-based depth completion module, which uses the confidence from the stereo network to identify and improve erroneous areas in depth prediction through depth-normal consistency. Extensive qualitative and quantitative evaluations on real-world data demonstrate state-of-the-art results that can even outperform a commercial depth sensor. Furthermore, our method can significantly narrow the Sim2Real domain gap of depth maps for state-of-the-art learning based 6D pose estimation algorithms 
650 4 |a Journal Article 
700 1 |a Liu, Isabella  |e verfasserin  |4 aut 
700 1 |a Yang, Edward  |e verfasserin  |4 aut 
700 1 |a Tao, Jianyu  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaoshuai  |e verfasserin  |4 aut 
700 1 |a Ran, Qing  |e verfasserin  |4 aut 
700 1 |a Liu, Zhu  |e verfasserin  |4 aut 
700 1 |a Xu, Jing  |e verfasserin  |4 aut 
700 1 |a Su, Hao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 15. Dez., Seite 14098-14113  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:15  |g month:12  |g pages:14098-14113 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3305399  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 15  |c 12  |h 14098-14113