ProactiV : Studying Deep Learning Model Behavior Under Input Transformations
Deep learning (DL) models have shown performance benefits across many applications, from classification to image-to-image translation. However, low interpretability often leads to unexpected model behavior once deployed in the real world. Usually, this unexpected behavior is because the training dat...
Publié dans: | IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 8 vom: 18. Aug., Seite 5651-5665 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2024
|
Accès à la collection: | IEEE transactions on visualization and computer graphics |
Sujets: | Journal Article |
Accès en ligne |
Volltext |